BER 183446

189400-39-F

Final Report

SPATIAL CHARACTERIZATION OF ACID RAIN STRESS IN CANADIAN SHIELD LAKES

F.J. TANIS, Principal Investigator E.M. MARSHALL Advanced Concepts Division MARCH 1989

(MASA-CP+103466) SPATIAL CHAPACICALIATIUM OF ACTU RAIM STRESS IN CAMADIAN SHIFLD LAKES Final Report (ERIM) 17. p CSCL 138

N9U-10479

Unclus 63/45 0234340

NASA/Goddard Space Flight Center Code 620 Greenbelt Road Greenbelt, MD 20771 Contract No. NAS5-28779

Technical Officer: Mr. Harold Oserfoff

	 			
		• · ·		
		•		
•				

Unclassified

CURITY CLASSIFICATION OF THIS PAGE	REPORT DOCUM	ENTATION PAG	E		OMB N	pproved o. 0704-0188
REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE N				
Unclassified		None		o spoot		
3. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/	AVAILABILITY OF	HEPUKI		
N/A		Unlimited	1			
b. DECLASSIFICATION/DOWNGRADING SCHEDULE		UITT THE	_			
N/A	3/5)	5. MONITORING O	RGANIZATION RE	PORT NUM	BER(S)	
PERFORMING ORGANIZATION REPORT NUMBERS	,(0)	N/A				
189400-39 - F				TATION		
a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (if applicable)	7a. NAME OF MOI	NITORING UKGAN	IZATION		
Environmental Research	(Mappineasie)	N/A				
Institute of Michigan		7b. ADDRESS (Cit	y, State, and ZIP	Code)		
Sc. ADDRESS (City, State, and ZIP Code) P.O. Box 8618			•			
3300 Plymouth Road		N/A				
Ann Arbor, MI 48107		9. PROCUREMEN	T INICTOLIMENT II	DENTIFICAT	ION NUMBE	R
NAME OF FUNDING /SPONSORING	8b. OFFICE SYMBOL (if applicable)	9. PROCUREMEN	I INSTRUMENT II	DENTI IOA	1014 110	
ORGANIZATION	N/A	N/A				
NASA/Goddard Space Ctr. 8c. ADDRESS (City. State, and ZIP Code)	1,7,	10. SOURCE OF I	UNDING NUMBE	RS		*
8c. ADDRESS (City, State, and 217 code) Greenbelt Road		PROGRAM	PROJECT NO.	TASK NO.		WORK UNIT ACCESSION N
Greenbelt, MD 20771		ELEMENT NO.	110.	""		
			<u> </u>	\		L
11. TITLE (Include Security Classification)		_			·	
			CL 4	-14 1 -		
Spatial Characterization o	f Acid Rain St	ress in Car	adian Shi	eld La	kes	
Spatial Characterization o	f Acid Rain St ————————	ress in Car	adian Shi	eld La	kes	
TOOLIN AUTHOR(C)		ress in Car	adian Shi	eld La		
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha	11	14. DATE OF REPOR	IT (Year, Month, D		15. PAGE	
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT 13b. TIME C	11		IT (Year, Month, D			
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report FROM 8-8	11	14. DATE OF REPOR	IT (Year, Month, D		15. PAGE	
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT 13b. TIME C	11	14. DATE OF REPOR	IT (Year, Month, D		15. PAGE	
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION	11 OVERED 6TO_12-88	14 DATE OF REPOR 1989, Marc	IT (Year, Month, D ch , 1	ay)	15. PAGE X +	102
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 16. SUPPLEMENTARY NOTATION 17. COSATI CODES	11 0VERED 6 TO 12-88	14. DATE OF REPOR 1989, Marc	IT (Year, Month, D ch, 1	ay) ary and ide	15. PAGE X +	lock number)
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION	OVERED 6 TO 12-88 18 SUBJECT TERMS acid rain,	14 DATE OF REPOR 1989, Marc (Continue on rev remote sens	IT (Year, Month, D ch, 1	ay) ary and ide	15. PAGE X +	lock number)
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP	OVERED 6 TO 12-88 18 SUBJECT TERMS acid rain, lake monito	14 DATE OF REPOR 1989, Marc (Continue on rev remote sens ring	IT (Year, Month, D ch, 1	ay) ary and ide	15. PAGE X +	lock number)
12. PERSONAL AUTHOR(S) F.J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP	OVERED 6 TO 12-88 18 SUBJECT TERMS acid rain, lake monito	14 DATE OF REPOR 1989, Marc (Continue on rev remote sens ring	IT (Year, Month, D ch, 1	ay) ary and ide	15. PAGE X +	lock number)
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if neces	OVERED 6 TO 12-88 18 SUBJECT TERMS acid rain, lake monito	14 DATE OF REPOR 1989, Marc (Continue on rev remote sens ring	erse if necessa	ay) ary and ide cal tra	15. PAGE x + entify by be	lock number)
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if neces	18. SUBJECT TERMS acid rain, lake monito	14. DATE OF REPOR 1989, Marc (Continue on rev remote sens ring block number) ern Ontario	erse if necessating, option	invest	15 PAGE x +	lock number) ncy,
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary in the lake acidification using Landsat TM to see	18. SUBJECT TERMS acid rain, lake monito ssary and identify by	14. DATE OF REPORT 1989, March	erse if necessating, option	investiso to	15 PAGE x + entify by beanspare tigated provide of th	lock number) ncy, e
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary in the lake acidification as important vegetation as important vegetation as important vegetation as important vegetation as important vegetation.	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in Northernse lake volument terrain ch	14. DATE OF REPORT 1989, March	erse if necessating, option	investing to to purpose ss wat	15 PAGE x + 1 entify by be anspare tigated provid e of the	lock number) ncy, e is ity
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation aproject was to determine	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North nse lake volument terrain ch ne the abilit	(Continue on reveremote sensing block number) ern Ontariome reflecta aracteristi	erse if necessating, option has been nece and a cs. The tot assettion. Re	investiso to purposes wates	15. PAGE x + entify by beanspare tigated provide of the er qual from th	lock number) ncy, e is ity
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF REMARKS FINAL REPORT FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation aproject was to determit characteristics associated.	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North nse lake volument terrain chance the abilit ated with lake	14 DATE OF REPOR 1989, Marc (Continue on rev remote sens ring block number) ern Ontario me reflecta aracteristi y of Landsa e acidifica sor can dis	has been nce and a cs. The to assetion. Recriminate	investiso to purposes water sults	15. PAGE X + entify by be anspare tigated provide e of the er qual from the	lock number) ncy, e is ity
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation a project was to determine characteristics associated based upon reflection.	18. SUBJECT TERMS acid rain, lake monitor ssary and identify by tion in North nse lake volument terrain che ne the abilit ated with lake a remote sen	(Continue on reveremote sensing block number) ern Ontario me reflecta aracteristi y of Landsa e acidifica sor can dis ypothesis i	has been nce and a cs. The to asset tion. Recriminates that seindicative	investiso to purpose sults lake asonal e of s	entify by beanspare tigated provide of the er qual from the clarity and muensitive	e is ity is itti-
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report Final Report 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation approject was to determine characteristics associated assed upon reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appears the continue on reverse if necessarily appears to the continue on reverse if necess	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in Northernse lake volument terrain change the ability ated with lake a remote sen our basic he	14. DATE OF REPOR 1989, Marc (Continue on rev remote sens ring block number) ern Ontario me reflecta aracteristi y of Landsa e acidifica sor can dis ypothesis i arency are	has been nce and a cs. The to assetion. Recriminates that seindicative lakes options.	investiso to purpose salts lake asonal e of sical t	entify by beanspare tigated provide of the er qual from the clarity and muensitive ranspare	e is ity is itti- vity rency
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation a project was to determine characteristics associated based upon reflection year changes in lake to acidic deposition.	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North ense lake volument terrain che ne the abilit ated with lake a remote sen optical transp In many acid	(Continue on reveremote sensing block number) ern Ontariome reflecta aracteristi y of Landsa e acidifica sor can disypothesis i arency are sensitive olved organ	has been nce and a cs. The to assetion. Recriminates that seindicative lakes opticic carbon	investing training investing to the purpose salts lake asonal e of sical t (DOC)	tigated provide of the clarity and muensitive ranspare	e is ity is vity rency it.
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation approject was to determit characteristics associstudy demonstrate that based upon reflection year changes in lake of to acidic deposition. is controlled by the acidic deposition.	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North nse lake volument terrain che ne the abilit ated with lake a remote sen Our basic h optical transp In many acid amount of diss	(Continue on reveremote sensing) block number) ern Ontariome reflecta aracteristi y of Landsa e acidifica sor can disypothesis i arency are sensitive olved organ	has been nce and a cs. The to assetion. Recriminates that seindicativelakes opto of lakes of	investiso to purpose salts lake asonal e of sical t (DOC) an pot	tigated provide of the clarity and muensitive ranspare ential	e is ity is rency
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report Final Report 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation approject was to determine characteristics associated assed upon reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appear changes in lake of the continue on reflection appears the continue on reverse if necessarily appears to the continue on reverse if necess	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North nse lake volument terrain che ne the abilit ated with lake a remote sen Our basic h optical transp In many acid amount of diss	(Continue on reveremote sensing) block number) ern Ontariome reflecta aracteristi y of Landsa e acidifica sor can disypothesis i arency are sensitive olved organ	has been nce and a cs. The to assetion. Recriminates that seindicativelakes opto of lakes of	investiso to purpose salts lake asonal e of sical t (DOC) an pot	tigated provide of the clarity and muensitive ranspare ential	e is ity is rency
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation approject was to determit characteristics associstudy demonstrate that based upon reflection year changes in lake of to acidic deposition. is controlled by the acidic deposition.	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North nse lake volument terrain che ne the abilit ated with lake a remote sen Our basic h optical transp In many acid amount of diss	(Continue on reveremote sensing block number) ern Ontariome reflecta aracteristi y of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of due to acidifical aracteristi y of the signature of the sensitive olved organisparency of the signature of the sensitive olved organisparency of the signature of the sensitive of the signature of the signa	has been nce and a cs. The to assetion. Recriminate s that seindicativelakes optic carbon of lakes od deposit	investiss lake asonal e of sical t (DOC) an potion an	tigated provide of the clarity and muensitive ranspar preserentially do load:	e is ity is rency
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessary in the lake acidification approject was to determine the characteristics associated as a project was to determine the characteristics associated as a project was to determine the characteristics associated as a project was to determine the characteristics associated as a project was to determine the characteristics associated as a project was to determine the characteristics associated as a project was to determine the characteristics associated as a project was to determine the characteristics associated as a project was a proj	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in North ense lake volument terrain chance the abilit ated with lake a remote sen Our basic hoptical transp In many acid amount of diss ne optical tra of the stress	(Continue on reveremote sensitive of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of due to acid	has been nce and a cs. The to assetion. Recriminates that seindicativelakes opto deposit	investiss lake asonal e of sical t (DOC) an potion an	tigated provide of the clarity and muensitive ranspar preserentially do load:	e is ity is rency
12. PERSONAL AUTHOR(S) F. J. Tanis and E.M. Marsha 13a. TYPE OF REPORT Final Report 13b. TIME OF FROM 8-8 16. SUPPLEMENTARY NOTATION 17. COSATI CODES FIELD GROUP SUB-GROUP 19. ABSTRACT (Continue on reverse if necessing Landsat TM to see important vegetation approject was to determit characteristics associstudy demonstrate that based upon reflection year changes in lake of to acidic deposition. is controlled by the acidic deposition.	18. SUBJECT TERMS acid rain, lake monito ssary and identify by tion in Northernse lake volument the ability ated with lake a remote sense our basic he optical transp In many acid amount of dissing of the stress	(Continue on reveremote sensitive of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of Landsa e acidifica sor can disypothesis i arency are sensitive olved organisparency of due to acidifical sensitive olved organism olved olved organism olved olved organism olved	has been nce and a cs. The to assetion. Recriminates that seindicativelakes opto deposit	investilso to purposes wates lake asonal e of sical t (DOC) an potion and sicinal sici	tigated provide of the clarity and muensitive ranspar preserentially do load:	e is ity ity rency it. ly ing.

DD Form 1473, JUN 86 ERIM 116

FOREWORD

The authors wish to acknowledge the helpfulness of the many individuals who contributed to this study and especially John Fortescue of the Ontario Geological Survey who organized and coordinated the August 1986 field measurements and to John Colwell and Norm Roller of ERIM who developed the approach to eco-physical stratification and who also reviewed this final report.

PRECIDENCE PACE PLANT NOT FIDED

	 -

TABLE OF CONTENTS

1.0	TECHNICAL SUMMARY	1
2.0	INTRODUCTION	
	2.3.3 Dissolved Organic Carbon	10
	2.5 DESCRIPTION OF THE STUDY REGION	11 11 13 14
	2.6 SUPPORTING RESEARCH 2.7 STUDY ORGANIZATION 2.8 STUDY PARTICIPANTS	15 16 17
3.0	ECO-PHYSICAL CHARACTERIZATION 3.1 OBJECTIVE 3.2 PROCEDURE 3.3 STRATIFICATION OF ECO-PHYSICAL FEATURES 3.3.1 Vegetation and Percent Cover 3.3.2 Sulfate Deposition 3.3.3 Bedrock and Soil 3.3.4 Relief	21 21 21 22 23 24 28
	3.4 COMPOSITE MAP CONSTRUCTION	29 31 32 35
4.0	DATA COLLECTION METHODS 4.1 LAKE SAMPLING STRATEGY 4.2 SUBSURFACE OPTICAL MEASUREMENTS 4.3 AIRBORNE RADIOMETER MEASUREMENTS 4.4 LANDSAT TM ACQUISITIONS 4.5 DATA QUALITY MEASURES	47 48 49 49 50
5.0	SUBSURFACE AND AIRBORNE RADIOMETRIC DATA REDUCTION 5.1 MER DATA REDUCTION	51 51 54

TABLE OF CONTENTS (Continued)

6.0	6.1	T TM PROCESSING METHODS LAKE SIGNATURE EXTRACTION SOLAR ELEVATION ANGLE CORRECTION ATMOSPHERIC HAZE CORRECTIONS	59 59 60 60
7.0	7.1 7.2	PMENT OF A BIO-OPTICAL REFLECTANCE MODEL REFLECTANCE MODEL MODEL CALIBRATION MODEL EXTENSION WITH PROBAR DATA REFLECTANCE SENSITIVITY TO CHANGES IN WATER CHEMISTRY	61 61 64 64
	7.5	MODEL-PREDICTED SENSITIVITY OF TM	70
8.0	ANALYS: 8.1	IS OF RADIOMETRIC DATA RELATIONSHIPS	73
	8.2 8.3 8.4	AREA LAKES	73 73 79
	8.5 8.6	MEASUREMENTS	79 83 83 83
	8.7	8.6.2 TM Multitemporal Analysis	85 88
9.0	ANALYS:	IS OF ECO-PHYSICAL CLUSTERS	93
	9.2	PHYSICAL CLUSTERS	93
	9.3	PHYSICAL CLUSTERS	94
	9.4 9.5	Analysis of TM Signal Changes Due to Acid Deposition Changes	95 96
10.0	10.1 10.2	JSIONS AND RECOMMENDATIONS GENERAL CONCLUSION	99 99 90 101
REFER	ENCES		103
APPEN	DIX A:	ECO-PHYSICAL CLUSTER ANALYSIS	A- 1
APPFN	DIX R:	PROBAR REFLECTANCE DATA	B-1

TABLE OF CONTENTS (Concluded)

APPENDIX C:	SUMMARY STATISTICS FOR THE ECO-PHYSICAL POLYGON CLUSTER ANALYSIS	C-1
APPENDIX D:	WATER CHEMISTRY DATA	D-1
APPENDIX E:	TRANSMISSOMETER DATA DERIVED TRANSMISSION AND ATTENUATION COEFFICIENTS	E-1
APPENDIX F:	MER-SUBSURFACE SPECTRAL RADIOMETER MULTI- TEMPORAL LAKE REFLECTANCES	F-1
APPENDIX G:	LAKE EXTRACTED TM SIGNAL VALUES AND ATMOSPHERIC CORRECTED VALUES	G-1

LIST OF FIGURES

2.1	The Location of the Three Study Areas	12
2.2	Study Organization	18
3.1	The Annual Deposition (G/M**2) of Sulfate in Ontario (from Chan, Tang and Lusis, 1983)	25
3.2	The Stratification Procedure	30
3.3	Color Code for Test Site Clusters	37
3.4	The Algoma Area Clusters and Sampling Sites	39
3.5	The Sudbury Area Clusters and Sampling Site	41
3.6	The Algonquin Area Clusters and Sampling Sites	43
5.1	Downwelling Irradiance Attenuation $K_d(\lambda)$	52
5.2	Subsurface Reflectance $R(\lambda)$	53
7.1	Absorption Cross Sections for Chlorophyll-a, DOC, Suspended Minerals, and the Absorption Coefficient of Pure Water	62
7.2	Backscatter Cross Sections for Chlorophyll-a, Suspended Minerals, and the Backscatter Coefficient of Pure Water.	63
7.3	Reflectance Model for Dissolved Organic Carbon	66
7.4	Model Predicted Versus PROBAR Predicted Subsurface Reflectance at 440nm. PROBAR Data Collected from Algoma and Sudbury Site, August 1986	68
7.5	Model Predicted Versus PROBAR Predicted Subsurface Reflectance at 470nm. PROBAR Data Collected from Algoma and Sudbury Site, August 1986	69
7.6	Sensitivity of Reflectance to Changes in DOC Concentration for a Clear Lake Typical of the Sudbury Site	71
8.1	Dissolved Organic Carbon Versus pH Value for Water Samples Collected from Algoma and Sudbury Sites, August 1986	75

LIST OF FIGURES (Concluded)

8.2	Spectral Reflectance for Sunnywater Lake as Derived from MER Data Collected 13 August 1986	77
8.3	Spectral Reflectance for Center Lake as Derived from MER Data Collected 22 August 1986	77
8.4	Comparison of MER and PROBAR Derived Spectral Relfectances	79
8.5	TM Band 1 Versus Dissolved Organic Carbon Using the August 13, 1986 (P19, R27) and August 18, 1986 (P22, R27) Data Sets	84
8.6	TM Band 1 Versus Dissolved Organic Carbon Using the May 12, 1987 (P19, R27) Scene Data	86
8.7	TM Band 1 Versus Dissolved Organic Carbon Using the June 13, 1987 (P19, R27) Scene Data	87
8.8	TM Band 1 Multitemporal (August 13, 1986 and May 22, 1985) Differences Versus DOC Concentration Sudbury Field Site August 1986 Water Chemistry Data	90
8.9	Beam Attenuation Coefficient Versus Suspended Solids Concentration 1987 Spring/Summer Data	91
9.1	Mean DOC Induced Reflectance Sensitivity for Each Eco- Physical Strata Estimates Based upon August 1986 Water Chemistry Measurements	97
D.1	MER and PROBAR Sampling Stations for the Algoma Site	D-11
D.2	MER and PROBAR Sampling Stations for the Sudbury Site	D-13
F.1	Smoothwater Lake	F-2
F.2	Whitepine #1 Lake	F-4
F.3	Sunnywater Lake	F-6
F.4	Wolf Lake	F-8
F.5	North Yorkston Lake	F-10
F.6	Whitepine #2 Lake	F-12
F.7	Dougherty Lake	F-14
F.8	Centre Lake	F-16

LIST OF TABLES

3.1	Vegetation and Percentage Cover Sensitivities	23
3.2	Sensitivity Values of Sulfate Desposition Levels	24
3.3	Bedrock Sensitivity Categories	26
3.4	Soil Depth Categories	27
3.5	Bedrock/Soil Sensitivity Index Values	28
3.6	Topographic Relief Categories	29
3.7	Relief Sensitivity Values	29
3.8	Sensitivity Ratings and Type Values for the Ten Significantly Different Clusters	33
3.9	Cluster Classes	35
4.1	Image Tapes Requested from NASA GSFC Landsat Office	50
6.1	Thematic Mapper Data Extracted	59
7.1	Reflectance Model Coefficients	65
7.2	Comparision of PROBAR and MER Model Coefficients	67
7.3	Predicted Changes in Reflectance and TM Band 1 Counts	72
8.1	Pearson Correlation Coefficient for Water Chemistry Parameters with their Significance Probabilities Given Directly Below Each Value	74
8.2	Pearson Correlation Coefficient for Water Chemistry Parameters with MER Derived Reflectances	76
8.3	Coefficients for Subsurface Reflectance Model using MER Data	78
8.4	Pearson Correlation Coefficient for Water Chemistry Parameters with PROBAR Derived Reflectances	81
9.1	Results for Tukey's Studentized Range Test for Significantly Different Mean Water-Quality Parameters	93
9.2	TM Relationships to Eco-Physical Sensitivity, August TM 1 Data	94

LIST OF TABLES (Concluded)

9.3	TM Relationships to Eco-Physical Sensitivity Analysis of Variance of August-May Differences	95
B.1	Corrected PROBAR Reflectances Above the Water Surface and Water Chemistry Data	B-2
B.2	PROBAR Subsurface Predicted Reflectances	B-7
C.1	Summary Statistics on Each Cluster, Maximum Like- lihood Cluster Analysis	C-2
D.1	August 1986 WQ Data Collected from the Algoma and Sudbury Sites	D-2
D.2	May-June 1987 WQ Data Collected from Selected Lakes in the Sudbury Site	D - 9
G.1	Sudbury Quad 3, August 13, 1986, Raw TM Signals and Standard Deviations	G-2
G.2	Algoma Quad 4, August 18, 1986, Raw TM Signals and Standard Deviations	G-6
G.3	Sudbury Quad 3, May 12, 1987, Raw TM Signals and Standard Deviations	G-7
G.4	Sudbury Quad 3, June 13, 1987, Raw TM Signals and Standard Deviations	G-8
G.5	Sudbury Quad 3, August 13, 1986, Corrected TM Signals and Standard Deviations	G-8
G.6	Algoma Quad 4, August 18, 1986, Corrected TM Signals and Standard Deviations	G-9
G.7	Sudbury Quad 3, May 12, 1987, Corrected TM Signals and Standard Deviations	G-10
3.8	Sudbury Quad 3, June 13, 1987, Corrected TM Signals and Standard Deviations	G-11

1.0 TECHNICAL SUMMARY

The lake acidification in Northern Ontario has been investigated using Landsat TM to sense lake volume reflectance and also to provide important vegetation and terrain characteristics. The purpose of this project was to determine the ability of Landsat to assess water quality characteristics associated with lake acidification. Our basic hypothesis is that seasonal and multi-year changes in lake optical transparency are indicative of reaction to acidic deposition. Results from this study demonstrate that a remote sensor can discriminate lake transparency based upon measured reflectance. In many acid sensitive lakes, optical transparency is controlled by the amount of dissolved organic carbon (DOC) present. DOC is a strong absorbing nonscattering material which has the greatest impact at short visible wavelengths including TM band one. Acid sensitive lakes have high concentrations of aluminum, which have been mobilized by acidic components contained in the runoff. Aluminum complexing with DOC is considered to be the primary mechanism to account for increased lake transparency.

When eco-physical properties developed from vegetation, soil/bedrock, sulfate deposition, and topographic relief characteristics were stratified across the study regions, it was determined that these regions could be described as ten separate environments based upon a simple acid sensitivity index model. This classification of the environment predicts location of regions containing acid sensitive lakes. The spatial co-occurrence of acid sensitive eco-physical parameters showed that acidification of a lake is driven mostly by local geology and soil conditions and less by the rate of sulfate deposition. Geologies which are weather resistant containing quartz rich sandstones and other quartz rock with bare or shallow sandy soils are most susceptible to regional acid deposition. These geologies produce naturally very low buffered acid sensitive lakes, contain very low amounts of DOC, and tend to have lower values of pH.

This study involved gathering an extensive amount of supporting data from 1986 and 1987. During August 1986, data were gathered from several sites representative of the range of ecosystems found in Northern Ontario. These data include limnological parameters, subsurface spectral irradiance, subsurface beam attenuation, airborne radiometry, and Landsat TM coverage. Based on these data, lake reflectance was modelled in terms of DOC and chlorophyll-a pigment concentrations. It was demonstrated that acid lakes having abnormally small amounts of DOC show greater reflectance than lakes with normal pH and DOC values. Significant correlation was found between in-situ and above surface lake volume reflectances. The model-predicted changes in TM band one signal response were consistent with observed values.

A second data set was gathered during May and June of 1987 on eight lakes to observe possible seasonal changes in subsurface and Landsat TM reflectance measurements. It was expected that spring runoff would produce decreases in DOC concentration and an increase in reflectance as a result of aluminum complexing. Actually, seasonal changes in TM observations of the lakes were very small as were the changes in the subsurface reflectance data. The significance of these changes was doubtful. In addition, little seasonal change could be demonstrated in lake water chemistry from May to June for this data set. Many of these latter constituent concentrations were near the reported lower limit of detection. During the winter of 1986 and 1987, the precipitation was particularly anomalous. Lack of snow during the winter left water levels down an average of three to four feet in the Sudbury area during spring, 1987. The lack of snow and subsequent runoff may explain the absence of a seasonal change in TM reflectance. More extensive seasonal observations are necessary to validate the season transparency hypothesis.

An historical TM scene pair (1985-1986), however, did demonstrate multi-year changes that were consistent with expected changes in water chemistry, but lacks the chemistry and in situ optical data needed for

SERIM

hypothesis validation. Lakes displaying the greatest TM changes are also the ones which were identified to be in acid sensitive strata. We conclude that there is likely some seasonal changes in transparency which can be related to the acidification process but it is also likely that year to year variability is significant. Strong relationships were found between chemical and optical properties of sampled lakes and the eco-physical strata within a single date. Optical transparency in clear acidified lakes is sensitive to water quality changes.

Results show that a remote sensor can discriminate clear acid lakes from colored high DOC lakes based upon reflection. The clear acid lakes may be naturally clear. TM signals were found to be generally higher for these lakes due to higher volume reflectance and greater effective transparency. Subsurface and airborne spectral reflectance measurements confirm this result. High DOC lakes in the same sensitive environments are less prone to pH change and certainly to changes in reflectance. Many of these lakes were originally acidic and will remain so but seem to be less impacted by acid deposition than the clearer low DOC lakes. Both lake types can be distinguished by remote sensing but it is necessary to first stratify the region to identify the acid sensitive environments. When stratification of ecophysical properties is used to identify acid sensitive areas TM can be used to pick lakes which are likely to be most sensitive to acid deposition and which also are indicators of temporal change.

The opportunities for using TM to monitor multitemporal lake reflectance changes remains positive but additional data collections are considered necessary to confirm or deny the interpretations made in the present study. However, it is apparent that remote sensing of lake reflectance provides a means to identify many of these lakes and to possibly monitor their decline or recovery over extended period of time.

2.0 INTRODUCTION

2.1 STATEMENT OF THE PROBLEM

The acidification of lake waters from airborne pollutants is of continental proportions both in North America and Europe. A major problem with acid deposition is the cumulative ecosystem damage to lakes and forests. The number of lakes affected by this in north-eastern United States and on the Canadian Shield is thought to be enormous.

2.2 STATEMENT OF THE OBJECTIVES

This research had three principal objectives. First, determine how lake constituent concentration and lake transparency are related to annual acidic load. Second, investigate the utility of Thematic Mapper (TM) based observations to measure changes in the optical transparency in acid lakes. Third, examine the relationships between variations in lake acidification and eco-physical properties.

2.3 BACKGROUND

Previous investigations have suggested that DOC, which originates from the dissolution of humic substances, controls transparency in many Canadian Shield Lakes (Howard and Perley, 1982). It has also been established that aluminum, which is abundant in the local rocks and soils, is easily mobilized by acidic components contained in spring runoff (Hendry and Brezonik, 1984). The presence of any significant amount of aluminum induces a loss of DOC from the water column by coagulation and complexing resulting in increased optical transparency. This process has not been observed in lakes with normal pH levels associated with buffered geologies. In a normal lake, transparency would tend to decrease in time with the seasonal phytoplankton productivity cycle. Thus seasonal changes in the optical transparency of lakes should potentially provide an indication of the stress due to acid deposition.

PRECEDING PAGE BLANK NOT FILMED

The potential for this optical response is related to a number of local eco-physical features with soil/geology being, perhaps, the most important. Other important factors include sulfate deposition, vegetation type, vegetation cover, and topographic relief. The area of northern Ontario under study contains a wide variety of geologies from acid-sensitive quartzite to acid-insensitive dolomite. Annual sulfate deposition ranges from 1.0 to 4.0 grams per square meter (Environmental '82 Committee, 1982).

An acidifying lake undergoes a process of decay known as oligotrophication. Fewer and fewer ions of acid within the lake can be neutralized by the biological community. Increasing acidity further hampers the normal biological processes. Even though the acidity is not yet fatal to most fish, the lake is considered acid-sensitive and scientists would most like to monitor a lake at this delicate point. An acid-sensitive lake is thought to have, in general, high aluminum ion concentrations, low pH values, low alkalinity concentrations, and low DOC concentrations.

Several investigators including Almer [1974], Malley [1982], Schofield [1972], and Yan [1983] have reported a reduction in water attenuation with acidification. Almer proposed that the changes resulted from probable interaction between aluminum mobilized in the watershed and DOC and argued that an aqueous solution with pH below 5 will result in the precipitation of humic substances (such as DOC) from the water column. At pH's above 5.5 the aluminum, as aluminum hydroxide, will precipitate from the water column. The concentration of soluble aluminum will increase significantly if watershed soils are acidified and thus there is correlation between dissolved aluminum and lake pH. Acidified lakes with high concentrations of aluminum should also be relatively clear because of the complexing reductions of DOC. Almer, however, suggests in lakes with very high humus the aluminum complexing does not result in precipitation. Effler's [et.al., 1985] description of experiments in Dart Lake not only confirm the strong relationship between DOC and lake transparency but also demonstrate

the coagulation/adsorption of DOC by aluminum. The following discussions relate how chemical and optical properties will be effected by the acidification process.

2.3.1 PH

Many lakes in the Northern Ontario region have experienced a 100-fold increase in acidity (i.e., from pH=6.8 to pH=4.4) in one decade. Much of this is due to abnormally acidic atmospheric deposition and the low buffering capacity of the Shield. The present average acid deposition over Ontario has a pH level of 4, which is ten times more acidic than normal rain and 1000 times more acidic than neutral water. Two classifications of lakes based on pH are made most often. Lakes with pH's less than 6.5 are typically acid-sensitive lakes. These lakes have severe pH fluctuations, especially during spring thaw, resulting in obvious negative biotic impacts. Lakes with a pH of 5.0 or less can only support a few acid-insensitive plankton and are generally considered "acidified". Near pH 6.5 the effects are not as noticeable, but the pH fluctuations kill off most of the young biotic generations. The process leading to an "acidified" lake begins at a pH of 6.5. Those lakes with pH's greater than 6.5 are considered more or less "normal" and the water chemistry remains fairly stable (Environment '82 Committee, 1982).

2.3.2 Aluminum

Acidification transforms organic weak-acid dominated lakes to mineral strong-acid dominated lakes. More specifically, acidification decreases the availability of organic ligands for binding metals such as aluminum (Davis et al., 1985). As a result, aluminum ions are usually found in high concentrations in acid lakes, and aluminum ion data could be used to predict acid-sensitive lakes. High concentrations of aluminum ions will ensure the absence of fish since aluminum hydroxide forms on their gills, making it difficult for the fish to intake oxygen. In general, if the aluminum concentrations reach 200

 μ g/l, the lake becomes toxic to fish (Environment '82 Committee, 1982).

Since precipitation has a very low aluminum concentration, the aluminum found in a lake's water column reflects mineral weathering within watersheds or mineral dissolution from lake sediments. Therefore, we would expect that a relationship would exist between surrounding terrain and within-lake concentrations.

2.3.3 Dissolved Organic Carbon

Acidified lakes found in Norway undergo a precipitation of the colored organic matter (DOC) in the water by acid-mobilized metals such as aluminum (Davis, Anderson and Berge, 1985). Increasing mineral acids actually protonate organic molecules and increase their tendency to aggregate and precipitate. The mobilization of aluminum in inorganic form provides further charge neutralization of organic functional groups leading to their precipitation. Dissolved organic carbon measured from lake samples represents the amount of organics still within the water column and may reflect the nutrient status of the lake.

2.3.4 Alkalinity

Alkalinity is a measure of the ability of water to neutralize acid. The presence or absence of hydroxide, bicarbonate, and carbonate strongly influence the alkalinity or "buffering capacity" of a lake. Alkalinity is determined by measuring the amounts of acid required to neutralize alkaline water to pH 8.2 and pH 4.5 (pH 8.2 indicates the conversion of the carbonate to bicarbonate ions and pH 4.5 indicates the conversion of the bicarbonate ions to carbonic acid). These two acid levels determine the buffering capacity of the lake. A pH of 7.0, that of neutral water, bears little significance in the determination or expression of alkalinity (Chow, 1964). Therefore, alkalinity levels provide information not acquired with pH data alone.

When using Total Inflection Point (TIP) as a measure of alkalinity, an acidified lake is indicated when the TIP is less than or equal to zero (Keller and Pitblado, 1985).

A review of the literature shows that in-lake pH levels, and concentrations of DOC, aluminum and alkalinity all indicate the acid sensitivities of a lake. These parameters, however, are not just a function of in-lake processes and atmospheric loading; they are also a function of terrigenous loading, i.e., a function of bedrock, soil, vegetation, and possibly terrain relief (Effler, Schafran, and Driscoll, 1985).

2.3.5 Optical Effects

The bio-optical state is a measure of the total effect of biological and chemical processes on the lake optical properties. This concept maintains that diverse constituents in natural waters can be described by a few optical parameters which represent a meaningful average estimate of the material present at any time and place.

The reflectance of a lake is optically determined from the scattering and absorption processes which occur in the epilimnion (i.e. to the depth where the downward irradiance medium can be predicted by means of the radiative transfer equation). The absorption and scattering properties are inherent optical properties and do not depend on the light field external to the medium. There are three inherent properties which together are sufficient to describe the behavior of light in the medium. The absorption coefficient is the fraction of energy absorbed from the collimated beam per unit distance traversed in the medium. The scattering coefficient is the fraction of energy which is scattered out of a collimated beam per unit distance traversed by the beam. The volume scattering function describes the fraction of energy scattered in a specific direction per unit scattering volume. These three inherent properties can be used to predict the subsurface irradiance reflectance which is described as an apparent property of the medium. The subsurface reflectance can in turn be

related to the above surface upwelling radiance which is also controlled by the radiance distribution parameters and the Fresnel transmittance. This latter radiance is a component of the radiance observed by an airborne radiometer or by Landsat TM.

The scattering and absorbing agents in natural waters can be divided into three categories: water, dissolved materials, and suspended materials. If the absorption and scattering characteristics of the medium are known, the behavior of light with the suspended and dissolved materials in the water column can be estimated. The reflectance can be related to the constituent concentrations using a simple model described later in Section 7.0 since the absorption and scattering coefficients for constituents are additive.

For lakes in slow-weathering soil/rock conditions the amount of suspended mineral content is minimal. The remaining components in these lakes which have an optical impact are chlorophyll-a pigment and DOC. Both of these components have large absorption coefficients in the blue-green spectral region. Scattering by chlorophyll-based phytoplankton is small so we are essentially dealing, in many cases, with an aquatic medium which is dominated by absorption. An increase in DOC results in increased absorption and a decrease in reflectance. Since the absorption cross section for DOC is large in the blue-green spectral region, small changes in the DOC concentration may produce significant changes in reflectance especially when the base concentration is low.

2.4 DATA COLLECTED

Water quality parameters were measured along with in-situ optical data in representative lakes of the Canadian Shield. This was done to calibrate a Bio-Optical Model which defines the linkages between the acid-deposition induced chemical lake processes and the upwelling radiometric signals measured by the Landsat Thematic Mapper sensor. A spring/summer TM scene pair and companion field measurements were obtained for the selected study sites located in northern Ontario.

These data will be used to investigate possible formulations of the multitemporal remote sensing causal relationships between water chemistry and observed changes in water transparency.

2.5 DESCRIPTION OF THE STUDY REGION

The study region of Northern Ontario consisted of four principal sites located within the following three Landsat scenes: Sudbury, Algoma, and Dorset. Relative locations of the study sites are shown in Figure 2.1 and their general characteristics are described in the section below.

2.5.1 Sudbury Site

<u>Location</u>: The Sudbury Site is located within the Landsat TM scene 19-27 and has the following coordinates:

Upper Left: 47° 40.05′ -80° 49.40′ Lower Right: 46° 16.51′ -80° 36.50′

Geology: The geology of the Sudbury site is dominated by the Lorrain formation which consists of quartzite, arkose, quartz sandstone, micaceous and aluminous quartz sandstone, quartz feldspar sandstone, and minor conglomerate and siltstone. Mafic intrusive diabase and granophyte dikes and sheets are distributed evenly throughout the site except near lake Wanaptei Significant amounts of conglomerate, sandstone, siltstone and argillite are found in the southern half and northern tip of the site. In addition scattered areas of felsic intrusive and metamorphic rocks, and felsic to intermediate metavolcanics occur.

<u>Vegetation</u>: Approximately 65% of the test site has conifer forest cover and approximately 35% is classified as mixed forest.

<u>Soil Sensitivity</u>: Approximately 90% of this site has low potential to reduce acidity and the soil is predominantly shallow. The remaining 10% of the site has a moderate potential to reduce acidity with shallow soils and ultramafic bedrock.

Figure 2.1. The Location of the Three Study Areas

Limnology/Water Chemistry: The quartzite regions have very transparent lakes (e.g., Sunnywater has a Secchi depth of 25-30 meters) with high concentrations of aluminum, low pH values (4-5.5), low DOC concentrations, and metal fallout from the Sudbury smelter. The dark humic lakes tend to have higher pH values.

Acid Deposition: Annual deposition in 1982 was 1.24 g/m^2 of sulfate

2.5.2 Algoma Site

<u>Location</u>: The Algoma site is located within the TM scene 22-27 and has the following coordinates:

Upper Left: 47° 21.5', -84° 25.8' Lower Right: 47° 00.0', -84° 13.8'

Geology: Granitic rock predominates (60%) in the Algoma site and is concentrated in the northeast and southwest corners. Approximately 25% of the geology consists of acid to intermediate metavolcanics and 15% is basic and undifferentiated metavolcanics. Several lakes are situated in greywacke-slate-arkose and grabbro formations.

<u>Vegetation</u>: Hardwood forests predominate (Sugar Maple, Birch, Trembling Aspen) with a few mixed stands in the lowland areas (White Birch, Black Spruce, and White Spruce).

Soil Sensitivity: The northern half (approximately 55%) of the site has a high sensitivity to acid deposition with 0.25 to 1 meter soil depth with sandy texture and granite and associated alkalic bedrock. The southern corner(5%) is the same as the northern half of the site. A moderate potential to reduce acidity is found in the southern part of the test site (35%), which stems from a differing bedrock (ultramafic serpentine, non-calcareous silicic sediments and anorthosite)

<u>Limnology/Water Chemistry</u>: Lakes in this region are less transparent due to a higher DOC content. Levels of pH are typically between 5 and 6.

Acid deposition: Annual deposition of sulfate 1.5-2.0 g/m²

2.5.3 Dorset Site

<u>Location</u>: the Dorset site is located near the southern edge of TM scene 18-28.

<u>Geology</u>: Acid intrusives occur throughout this area including granite, syenite, granite gneiss, grantized sedimentary and volcanic rocks.

<u>Vegetation</u>: Predominantly hardwoods (Sugar Maple, Red Maple, Yellow Birch, Trembling Aspen) occur in this area. Hemlock and Eastern white pine are found in selected areas.

<u>Soil Sensitivity</u>: The Dorset area is in the center of a large region of high deposition. West of Dorset there is less than 50% exposed bedrock and to the east 50 to 75% is exposed.

<u>Limnology/Water Chemistry</u>: Lakes in this region are poorly buffered. DOC levels are higher and secchi depths are lower compared to the Sudbury area.

Acid Deposition: Annual deposition of sulfate 2.90 g/m^2 .

2.5.4 Wawa Site

<u>Location</u>: The Wawa site is located northeast of Wawa, Ontario near Michipicoten Bay.

<u>Geology</u>: The northern third of the Wawa site consists of mafic meta-volcanics. Felsic metavolcanics occur in the southern tip of the site and are also interspersed with metasediments (conglomerate, greywacke, shale, arkose, and quartzite) near the middle of the site.

<u>Vegetation</u>: This site contains large non-vegetated areas which have been impacted by the smelter fumes from Wawa.

<u>Soil Sensitivity</u>: This area is primarily moderately sensitive to acid deposition. A small area of high sensitivity exists along the Maple River in the southern part of the Wawa plume.

Limnology/Water Chemistry

Lakes in this region are buffered , have higher pH values, high DOC levels, and relatively low transparency except in the immediate vicinity of the Wawa smelter plume where the lakes are acid and clear and highly contaminated with smelter waste.

Acid Deposition: Annual deposition in 1982 was 1.5 g/m²

2.6 SUPPORTING RESEARCH

An historical water quality database, has been obtained from the Ministry of Environment for all of Ontario which contains many lakes within our proposed field sites. A second database is being acquired for approximately 300 lakes in the Sudbury area, many of which are located within the proposed sampling sites. The most important parameters within this database are those which have impact on the optical transparency of the water. These parameters are chlorophyll pigments, suspended mineral particles, and dissolved organic carbon. Of these DOC is considered to have the greatest influence on optical properties in Northern Ontario.

One obvious feature indicating a declining lake is low pH, but a low pH is not the only characteristic of an acidified lake. Chemical levels within a lake can also indicate its health. A study involving lake classification near Sudbury, Ontario used principal component analysis to show that chemical variability of acidified lakes is attributed to three main components: nutrient status, buffering status, and atmospheric deposition status (Pitblado et al., 1980). Nutrient status of a lake could be indicated by levels of dissolved organic carbon, while buffering status could be indicated by the alkalinity of a lake. Atmospheric deposition status might be indicated by the annual rate of sulfate deposition within an area.

Some historical data collected by John Fortescue at OGS, using the PROBAR/helicopter over a portion of the Algoma site, were made available to be analyzed with coincident limnological data. These data

were collected on August 22, 1984 and on September 6, 1985. Fortescue had attempted to used these data to separate clear and colored acidic and normal pH lakes within the site [Fortescue, 1986]. Since many of the same lakes were to be sampled during the August 1986 field work using the PROBAR radiometer, it seem reasonable to examine these data for potential relationships between the PROBAR measurements in TM bands and the measured values of DOC, pH, etc. The data set consisted of 113 sample locations and a representative subset was selected for data reduction. The reported reflectances at 10 nm intervals were first reduced to simulate TM band reflectances in bands 1 through 4. These data were then statistically correlated to the available limnological data.

Attempts to run analyses on the combined 1984/1985 data set yielded very poor correlations. The 1985 data were found to be suspect because of reported instrumentation problems and further analysis of the 1985 PROBAR data set was therefore discontinued. The pH values of the 1984 data set ranged from 4.9 to 5.57 with a mean value of 5.24. DOC values were high and ranged from 3.1 to 14.1 mg/l with a mean value of 6.7 mg/l. Correlations with estimated TM reflectance values were considered modest (-0.73 for pH and TM band 3, -0.71 for pH and TM band 4). Similarly, coefficients of 0.62 and 0.64 were determined between the two TM bands and measured DOC. Correlations of comparable magnitude were observed between pH, DOC, and Secchi depth transparency. The lack of strong correlation was attributed to the relatively high levels of DOC which almost completely absorb the radiation in TM bands 1 and 2.

2.7 STUDY ORGANIZATION

This study was divided it into four types of activities: 1) stratification of eco-physical sensitivity, 2) water quality measurements, 3) lake optical measurements, and 4) remote sensing measurements. These activities in turn supported calibration of an optical model which would describe the reflectance sensitivity to changes in water

parameters and relationships between spatial eco-physical features. These eco-physical features describe the environmental sensitivity to acidification. Our approach is outlined with the organizational flow chart contained in Figure 2.2. The desired result from this effort was to be able to identify which environments contain lakes which are sensitive to acidification and can be monitored using Landsat TM data.

2.8 STUDY PARTICIPANTS

A cooperative program with Canadian agencies and Universities interested in the remote sensing aspects of the acid deposition problem have resulted in an informal joint program which includes four major Canadian participants. These are Professor Roger Pitblado of Laurentian University in Sudbury, Ontario, Dr. John Fortescue of the Ontario Geological Survey (OGS), Dr. Vernon Singroy of the Ontario Centre for Remote Sensing (OCRS), and Professor Michael Dickman from Brock University in Saint Catherine, Ontario.

The Canadians are funded through the Ministry of Environment (MOE) and the Ontario Geological Survey for a one year period to work collaboratively on the program. These funds were budgeted to support equally remote sensing data collection and analysis and a geochemical survey.

The Canadian effort was based on meeting two separate but highly complementary objectives. The OGS objective was designed to look the relationships between environmental and geochemical studies involving lake acidification and remote sensing. The geochemical survey techniques developed by John Fortescue of the OGS involve analysis of chemical constituents in lake water samples and in bottom sediment cores. A mineral resource appraisal was a specific objective of the OGS. The MOE support was directed at examining the role remote sensing can play in the study of lake acidification in both the short and in the long term. The MOE had stressed that effort be placed on the Sudbury site where there exists an extensive limnological database.

Figure 2.2. Study Organization

The MOE plan includes examination of several historical Landsat TM and MSS collections.

• ,		

3.0 ECO-PHYSICAL CHARACTERIZATION

3.1 OBJECTIVE

The objective of the eco-physical stratification and characterization of acid-sensitive parameters was to reveal the location and co-occurrence of environmental attributes that influence lake acidification. The study areas were stratified into the following four parameters:

- 1. type and percent cover of vegetation,
- 2. soil and bedrock buffering capacity,
- 3. topographic relief,
- 4. sulfate deposition rate.

The acid sensitivities of these areas were then determined, based on these four parameters. Each of these parameters affects the sensitivity of the ecosystem a lake is found in and ultimately affects the water chemistry and optical signature of that lake. Stratification also provided a basis to characterize lakes within study areas which aided in the sampling design.

3.2 PROCEDURE

The three Landsat scenes were stratified into eco-physical units, or "polygons", based upon soil/bedrock sensitivity, vegetation sensitivity, topographic-relief sensitivity and acid- deposition sensitivity. Sensitivity values were assigned to each polygon and combined in a linear function which produced a "sensitivity index" for each polygon using a sensitivity model. Maximum-likelihood clustering of these sensitivity indexes then revealed the location and co-occurrence of similar polygons.

3.3 STRATIFICATION OF ECO-PHYSICAL FEATURES

The Algoma, Sudbury, and Dorset study areas were stratified in terms of bedrock/soil, vegetation, relief and sulfate deposition.

PRECEDING FACE BLANK NOT FILMED

Four mylar overlays were constructed, one for each of the variables, at a scale of 1:250,000.

3.3.1 Vegetation and Percent Cover

The lowest pH values are found in coniferous forests. Fir trees are often found growing on weathering-resistant soils and bedrock. When precipitation falls on this type of area, the acidic water flows largely unaltered into nearby lakes at a pH of 5.6. Broadleaf forests are generally found in terrain of higher pH, so precipitation is neutralized more before it enters a lake. A much higher rate of sulfate deposition would be necessary to make the pH of runoff from a deciduous forest reach that of a coniferous forest (Environment '82 Committee, 1982).

Percent cover of vegetation also plays a factor in lake acidification. If percent cover is low, the extent and volume of surface runoff is frequently higher than for average cover conditions increases. Under these conditions, very little of the precipitation has time to penetrate into the rock and/or soil and become neutralized by the buffering systems.

TM satellite images were used for vegetation classification and lines were drawn between areas of different vegetation types and different percent covers of these types. Vegetation was categorized as conifer, hardwood, mixed or barren. If an area's vegetation consisted of 80% or more of either conifer forest or hardwood forest, then it was classified hardwood or conifer, otherwise it was classified as a mixed forest.

Percent cover for an area was derived using existing soil and bedrock sensitivity maps published by the Environment Canada Lands Directorate in 1983. These maps outline percent exposed bedrock at three levels: 0-24%, 25-50%, and 50-99%. Since there were no extensive areas of low vegetation, such as prairies, marshes, etc., the following equation was used:

(Percent forest cover) = 1 - (Percent exposed bedrock) .

Percent forest cover was divided into three classifications:

- 1. 0 49 % cover,
- 2. 50 74 % cover,
- 3. 75 99 % cover.

Vegetation and percent cover sensitivities were derived from the literature (Environment '82 Committee) and are shown in Table 3.1.

TABLE 3.1. VEGETATION AND PERCENT COVER SENSITIVITIES

Cover	<u>Percent</u>	Sensitivity Value
hardwood	0 - 49 %	3.33 x .75
hardwood	50 - 74 %	3.33 x .5
hardwood	75 - 99 %	3.33 x .25
mixed	0 - 49 %	6.67 x .75
mixed	50 - 74 %	6.67 x .5
mixed	75 - 99 %	6.67 x .25
conifer	0 - 49 %	10 x .75
conifer	50 - 74 %	10 x .5
conifer	75 - 99 %	10 x .25

These sensitivity values rank the combinations of vegetation type and percent cover on a scale from 1 to 10. Terrain with conifer forest cover was rated most sensitive and terrain with hardwood forest cover was rated least sensitive. The higher the percent cover the less sensitive the polygon was rated for potential damage.

3.3.2 Sulfate Deposition

Large emissions of sulfur dioxide and nitrogen oxide from combustion (usually within coal burning industries) lead to their oxidation in the atmosphere to sulfuric acid and nitric acid. These acids dissolve in water droplets and fall to the ground via some form of precipitation. The presence of sulfuric acid in precipitation over the Continental Shield results in 100 times more acid entering these already poorly buffered ecosystems (Hendry and Brezonick, 1984).

The sulfate deposition overlay was drawn from enlarged 1981 meteorologic maps (Chan, et al. 1983) provided by the Ontario Ministry of the Environment (see Figure 3.1) Sulfate deposition was measured in grams/ m^2 /year. Across all three areas, the following six classifications were derived from the maps in terms of deposition rates:

- 1. 1.0-1.5,
- 2. 1.5-2.0,
- 3. 2.0-2.5,
- 4. 2.5-3.0,
- 5. 3.0-3.5,
- 6. 3.5-4.0.

Sulfate deposition was assigned sensitivity values based on amount of sulfate deposited. Each of the six levels was assigned equally spaced sensitivity values on a scale from 1 to 10. The highest sulfate deposition was given the highest sensitivity value. The results are given below in Table 3.2.

TABLE 3.2. SENSITIVITY VALUES OF SULFATE DEPOSITION LEVELS

gm/m ² /year	Sensitivity Value
1.0-1.5	1.67
1.5-2.0	3.33
2.0-2.5	5.00
2.5-3.0	6.67
3.0-3.5	8.33
3.5-4.0	10.00

3.3.3 Bedrock and Soil

In general, the easier the ground materials around a lake weather, the less susceptible that lake is to acidification. Thus, weatherability of the lake's surrounding bedrock and soil play a large factor

Figure 3.1. The Annual Deposition (G/M**2) of Sulfate in Ontario (from Chan, Tang and Lusis, 1983).

on the lake's acidity. The rate at which bedrock and soil weather depend on their hardness and their ability to release buffering ions which counter lake acidification by reducing the impact of the water runoff.

Bedrock resistant to weathering does not neutralize acid rainwater therefore it is associated with acidic lake systems. Sensitivities for bedrock/soil combinations were derived from the Environment Canada Sensitivity Maps. Bedrock was divided into four categories based on its sensitivity. These four categories are found in Table 3.3.

TABLE 3.3 BEDROCK SENSITIVITY CATEGORIES

Type Description

- 1 limestone, marble, dolomite
- 2 carbonate-rich siliceous sedimentary: shale, limestone; noncalcareous siliceous with carbonate interbeds: shale, siltstone, dolomite; quartzose sandstone with carbonates.
- 3 ultramafic rocks, serpentine, noncalcareous siliceous sedimentary rocks: black shale, slate, chert; gabbro, anorthosite: gabbro, diorite; basaltic and associated sedimentary: mafic volcanic rocks.
- 4 granite, gneiss, quartzose sandstone, syenitic and associated alkalic rocks.

The ability of the soil to neutralize the acid was found to be the most important factor influencing the susceptibility of a lake to acidification. Lime-rich, easy-weathering soils protected the lakes, but lakes surrounded with sandy soil and expanses of flat bare rock are mostly acid (Environment '82 Committee, 1982). Basically three categories of soil can be defined: easy-weathering clay, normal-weathering loam, and resistant-weathering sand.

The soil's depth also affects the neutralization of precipitation.

A deeper soil will contain larger quantities of weatherable minerals

and other buffering substances. Thin soils are often leached of such buffering substances. In the stratification, one of the soil types (clay, loam or sand) was assigned to each polygon. Each polygon was also assigned a unique soil depth. The soil depth categories used are shown in Table 3.4.

TABLE 3.4. SOIL DEPTH CATEGORIES

<u>Category</u>	<u>Definition</u>			
deep:	> 1 m average soil thickness			
shallow:	25 cm - 1 m average soil thickness			
bare:	< 25 cm average soil thickness			

Different combinations of bedrock type, soil type, and soil depth were already ranked on the Environment Canada maps from most to least sensitive. Since there were 28 soil/bedrock combinations, the most sensitive combination was assigned a 10.0. The other combinations were assigned sensitivities ranging from 1 to 10 separated by units of 10/28. These combinations are shown in Table 3.5.

TABLE 3.5. BEDROCK/SOIL SENSITIVITY INDEX VALUES

ROCK TYPE	SOIL TYPE	SOIL DEPTH	SENSITIVITY VALUE
1 1 1 1 1 1 2 3	clay loam sand clay loam sand none clay clay	deep deep shallow shallow shallow bare shallow shallow	.36 .71 1.07 1.43 1.79 2.14 2.5 2.86 3.21
2	clay	deep	3.57
3	clay	deep	3.93
4	clay	deep	4.29
2	loam	deep	4.64
3	loam	deep	5.
2	sand	deep	5.36
3	sand	deep	5.71
2	loam	shallow	6.07
3	loam	shallow	6.43
2	sand	shallow	6.79
3	sand	shallow	7.14
2	none	bare	7.5
3	none	bare	7.86
1 2 3 2 3 2 3 2 3 2 3 4 4 4 4 4 4 4 4	clay loam loam sand none sand	shallow shallow deep deep bare shallow	8.21 8.57 8.93 9.29 9.64 10.00

3.3.4 Relief

Since the extent and volume of surface runoff plays an important factor in lake acidification, the topographic relief of the terrain surrounding a lake would help determine its acidification state. An area with steep topographic relief would allow less time for precipitation to penetrate the soil and bedrock and become neutralized. Flat topographic relief would contribute more to the neutralization of precipitation since the extent and volume of surface runoff would be less.

Relief was divided into three categories: steep, rolling, and level. This information was extracted from standard topographic maps

at a scale of 1:250,000. Change in elevation across unit distances was measured perpendicular to elevation contours and categorized into one of three types for each polygon. These categories are shown in Table 3.6.

TABLE 3.6. TOPOGRAPHIC RELIEF CATEGORIES

<u>Category</u>	<u>Definition</u>
level:	< 400 ft change in 2 kilometers
rolling:	> 400 ft $<$ 800 ft change in 2 km
steep:	> 800 ft change in 2 kilometers

Topographic relief levels were assigned three sensitivity values, equally spaced from 1 to 10. These three values are shown below in Table 3.7.

TABLE 3.7. RELIEF SENSITIVITY VALUES

Relief	Sensitivity Value
level	3.33
rolling	6.7
steep	10.00

3.4 COMPOSITE MAP CONSTRUCTION

The four maps were produced for each of the ecosystem parameters (bedrock and soil, sulfate deposition, terrain relief, and vegetation type and percent cover). Each map consisted of polygons that represented uniform ecosystem parameters and that were assigned corresponding sensitivity values. A composite map was then produced for each of the study areas by overlaying the four ecosystem parameter maps, and tracing them on to one overlay (see Figure 3.2). Ultimately, the new polygons created with the composite map had four sensitivity values:

Figure 3.2. The Stratification Procedure.

one for bedrock/soil, one for vegetation, one for relief and one for the sulfate deposition.

The three composite maps produced 694 polygons with a minimum polygon size of 25 square kilometers. Each polygon was numbered from 1 to 694. A computer program was written and used to read the polygon number, forest type, percent cover, bedrock type, soil type, soil depth, topographic relief and sulfate deposition into computer memory. A program subroutine was used to assign four ecosystem sensitivity values, ranging from 1 to 10, to each polygon and compute the sensitivity index for each polygon using the sensitivity index model.

A list of the polygons with eco-physical characteristics and sensitivity index values is found in Appendix A.

3.5 SENSITIVITY INDEX MODEL

A sensitivity index model was developed which assigned a sensitivity index to each composite map polygon. The sensitivity index, SI, is a function of a linear combination of the four ecosystem parameters within the polygon:

- SI = A x (bedrock/soil sensitivity value)
 - B x (vegetation sensitivity value)
 - C x (sulfate deposition sensitivity value)
 - D x (topographic relief sensitivity value).

The coefficients A, B, C and D were derived from the literature, but in the absence of quantitative information. An ecosystem sensitivity study in Sweden concluded that bedrock and soil were found to be the most important factors influencing the susceptibility of a lake to acidification (Environment '82 Committee). Also, areas of nearly equal rates of sulfate deposition, but differing types of bedrock and soil, have been found to contain lakes of different buffering capacities, supporting the idea that bedrock and soil are the most important eco-physical parameters in terms of lake sensitivity. Therefore the

coefficient "A" equals four, the highest number assigned to a coefficient. A review of the literature indicated that vegetation type was highly correlated with soil and bedrock type in terms of sensitivity, so the vegetation sensitivity value was weighted as the second most important variable.

If the vegetation and soil/bedrock sensitivity values were identical in two areas, it is assumed that sulfate deposition would affect the sensitivity of a lake within the area more than topographic relief would. Therefore the following equation was developed:

- SI = 4 x (bedrock/soil sensitivity value)
 - 3 x (vegetation sensitivity value)
 - 2 x (sulfate deposition sensitivity value)
 - 1 x (topographic relief sensitivity value).

The sensitivity index of an eco-physical polygon is driven by the bedrock/soil and vegetation sensitivity values. The sulfate deposition and topographic relief sensitivity values still contribute to an area's sensitivity, so they are included in the model but weighted as less important. Therefore, it is hypothesized that the sensitivity index rates the acid sensitivity of an eco-physical area on a scale from 1 to 10.

3.6 CLUSTERING OF MODEL SENSITIVITY VALUES

The sensitivity indexes of the polygons (approximately 694) were then clustered using a maximum likelihood hierarchical clustering procedure. The results of this clustering procedure has produced 10 significantly (p > .95) different clusters (see Appendix B). These clusters are summarized in Table 3.8.

TABLE 3.8 SENSITIVITY RATINGS AND TYPE VALUES FOR THE TEN SIGNIFICANTLY DIFFERENT CLUSTERS

CLUSTER RATING	BEDROCK/SOIL	VEGETATION	RELIEF	SULFATE	DEPOSITION
1	5.66	7.04	4.67	5.57	4.40
2	6.36	8.05	4.65	5.78	5.82
3	6.74	8.16	5.83	5.28	5.00
4	6.02	7.67	4.63	5.25	5.18
5	7.41	8.47	7.13	5.62	6.59
6	3.55	3.28	2.08	5.57	5.27
7	7.07	8.50	6.37	5.36	6.10
8	5.14	5.96	4.71	5.46	3.97
9	7.83	8.71	8.53	5.20	6.29
10	4.34	5.21	3.82	5.01	3.05

The ten clusters are described in terms of their mean eco-physical sensitivity values in the following paragraphs.

<u>Cluster 1</u> is characterized by shallow sandy soils over rock types 3 and 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately $2.0 \text{ g/m}^2/\text{yr}$.

<u>Cluster 2</u> is characterized by moderate depth soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.5 $g/m^2/yr$.

<u>Cluster 3</u> is characterized by deep sandy soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers

and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 2.5 $g/m^2/yr$.

<u>Cluster 4</u> is characterized by moderately deep soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately $2.25 \text{ g/m}^2/\text{yr}$.

<u>Cluster 5</u> is characterized by moderately deep sandy soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately $2.75 \text{ g/m}^2/\text{yr}$.

<u>Cluster 6</u> is characterized by deep clay soils over rock type 3 with less than 30% cropping out. Vegetative cover is mostly hardwood. The terrain is level to rolling. The average acid deposition is approximately 2.25 $g/m^2/yr$.

<u>Cluster 7</u> is characterized by shallow sandy soils over rock type 4 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods with a dominance of the conifers. The terrain is level to rolling. The average acid deposition is approximately 2.5 $g/m^2/yr$.

<u>Cluster 8</u> is characterized by moderately deep sandy soils over rock type 3 with less than 50% cropping out. Vegetative cover is a mixture of conifers and hardwoods. The terrain is level to rolling. The average acid deposition is approximately $2.0 \text{ g/m}^2/\text{yr}$.

<u>Cluster 9</u> is characterized by shallow sandy soils over rock type 4 with less than 25% cropping out. Vegetative cover is dominated by conifers. The terrain is level to rolling. The average acid deposition is approximately 2.5 $g/m^2/yr$.

Cluster 10 is characterized by deep sandy soils over rock types 3 and 4 with less than 50% cropping out. Vegetative cover is a mixture of

conifers and hardwoods with a dominance of the hardwoods. The terrain is level to rolling. The average acid deposition is approximately 1.5 $g/m^2/yr$.

These clusters are separated by only small changes in the mean value for each sensitivity index. The standard deviations of the above mean sensitivity index values was typically only one or two percent. Each cluster was color coded as shown in Figure 3.3. Color coded maps that show the location of the polygons within each cluster are shown in Figures 3.4 3.5 and 3.6. The listing of all eco-physical polygons by cluster with the strata descriptors is given as Appendix A. The summary statistics for the clusters is given in Appendix C.

The above clusters were further grouped into three classes which are shown in Table 3.9.

TABLE 3.9. CLUSTER CLASSES

Class	<u>Clusters</u>
insensitive	1, 6, 8, 10
mildly sensitive	2, 3, 4
sensitive	5, 7, 9

3.7 SAMPLE SITE SELECTION

Site selection for in situ lake measurements was based upon the stratification and clustering analysis described above and each of the following considerations: (1) availability of historical water quality and remote sensing data, (2) existing Canadian initiatives to collect site-specific data, (3) accessibility, and (4) coverage of ecophysical lake types. Sites selected included (1) Algoma, (2) Sudbury, (3) Wawa, and (4) Dorset. Nine of the ten clusters were represented by the selected sites.

The Canadian program recommended the use of the Algoma and Sudbury sites, each comprising approximately 1000 sq. km. Priorities were set

 \mathcal{L}_{ij} And the second s

Tect Cite Clucters	つしつつつつ
0 + t >	י
1001	つつ
for	>
ماران	נכסכ
ماران	
۲ ۲	
Figure 2 2	2

Cluster 4

Cluster 5

Cluster 3

ORIGINAL PAGE **COLOR PHOTOGRAPH**

Cluster 7 Cluster 8 Cluster 6

CANCINAL PAGE IS

Cluster 2

Cluster 1

Ecophysical

Areas

•		

Figure 3.4 The Algoma Area Clusters and Sampling Sites

ORIGINAL PAGE COLOR PHOTOGRAPH

ORIGINAL PAGE IS OF FOOR QUALITY

PRECEDING PAGE BLANK NOT FILMED

- -	****		

UNIGINAL PAGE CLASS PHOTOGRAPH

Figure 3.5 The Sudbury Area Clusters and Sampling Site

PRECEDING PAGE BLANK NOT FILMED

 ***	 -	

GRIGINAL PAGE CCLOR PHOTOGRAPH

Figure 3.6 The Algonquin Area Clusters and Sampling Sites

FOLDOUT MAN

and the second s	·	

for each of the four collection sites based upon group interests and availability of resources. First priority was given to the Sudbury site, second to Algoma, and third to Wawa. The Dorset site was viewed to be largely beyond the reach of a one-month field program and would only be addressed after the other data objectives had all been met. A lake sampling budget of approximately 300 samples was divided between the first three sites with 150 samples allocated to Sudbury, 130 allocated to Algoma, and 20 to Wawa. An additional 25 samples would be taken to support the Dorset sampling if resources were available.

RECEDING PAGE BLANK NOT FILMED

		W1100 C 1 C 1000

4.0 DATA COLLECTION METHODS

4.1 LAKE SAMPLING STRATEGY

The ERIM field plan specified sampling at three different levels and with three different optical measurements. Field data collections were made during the summer of 1986 and spring of 1987. The August 1986 collections included three sites: Sudbury, Algoma, and Wawa. At each of these sites, water samples were gathered from a well distributed set of lakes using a helicopter. Radiometric measurements were made using Landsat TM, a helicopter (BELL-206) spectral radiometer (PROBAR), a subsurface spectral irradiance meter, and a subsurface beam transmissometer. The sampling strategy was to gather subsurface measurements from a small number of lakes and in sufficient number to calibrate a subsurface reflectance model. Airborne spectral measurements were gathered over a much larger set to be used to extend the subsurface results to a broader set of lake conditions. Finally these lake reflectance spectral characteristics were used to predict the reflectance characteristics of the still larger TM lake sample data set. The strategy in this three-tier sampling scheme was to develop a model/relationship from the in situ optical measurements and the measured limnological parameters. This "optical response model", once validated, was extended to the PROBAR data set and finally to the Landsat data set where it aided in the interpretation of TM observations.

During August 1986 field data were gathered from each of the three sites which included 21 water quality parameters (296 lakes), detailed subsurface optical measurements (12 lakes), airborne spectral radiometer measurements (102 lakes), and Landsat data. Most of these measurements were made in the Algoma and Sudbury sites (shown as Figures D.1 and D.2). All water chemistry data are compiled as Appendix D. PROBAR spectral radiometer measurements were made in most of the lakes that were larger than 20 hectares. The subsurface optical measurements were made in a representative set of lakes at each site. Water

parameters were determined from collected samples by the MOE on-site or at the Toronto Laboratory. Water parameters especially important to this study included DOC, conductivity, total chlorophyll-a pigment concentration, pH, sulfate, alkalinity, TIP, turbidity, suspended solids, and aluminum.

The May-June 1987 field effort involved collecting subsurface MER reflectance and transmissometer data on four separate dates from eight lakes. Water samples were also collected and were processed by the MOE. Field data collections were made on 5 May, 14 May, 13 June, and 29 June at four to eight lakes in the Sudbury site. These data were collected coincident with the TM overpass on each of those dates. Two of these TM acquisitions (12 May and 13 June) were of excellent quality and were requested from NASA GSFC. No PROBAR airborne radiometer data were collected during the spring period because the unit was not available for project use.

4.2 SUBSURFACE OPTICAL MEASUREMENTS

Two instruments were used to make the subsurface optical measurements: a subsurface spectroradiometer (Biospherical Inc. MER-1000) with 11 narrow spectral bands (410, 441, 488, 520, 540, 560, 589, 625, 671 and 694 nm) and a transmissometer (SEATECH Inc.) with a single wavelength at 664 nm. These instruments were used to characterize the optical properties in several of the PROBAR-sampled lakes.

The MER-1000 subsurface upwelling and downwelling spectral spectral scans were collected in the field at variable sampling depths below the lake-water surface. MER data collections were made from a canoe (August 1986) and from a float plane pontoon (May-June 1987). The canoe measurements each consisted of 20 scans and the float plane measurements consisted of 10 scans. Fewer scans were used during the plane measurements since the instrument was allowed to drop through the water column at a faster rate. At each station a series of upwelling and downwelling irradiance measurements were made in suc-

cession. A pressure sensor in the MER recorded the depth of each spectral scan.

4.3 AIRBORNE RADIOMETER MEASUREMENTS

A helicopter-mounted (BELL 206) spectroradiometer (PROBAR) was used to collect radiometric data in each of 10 narrow spectral bands (443, 470, 520, 550, 580, 610, 640, 670, 700 and 732 nm) at the center of each sample lake.

PROBAR data was collected on four days in 1986:

August 12 15 Lakes

August 13 54 Lakes

August 14 18 Lakes

August 18 46 Lakes

Lakes sampled with the PROBAR were limited to those large enough to be visible in TM imagery and sufficiently deep not to produce a bottom reflected signal. The PROBAR unit had been rented from Moniteq Ltd., Toronto, Ontario and was controlled with an IBM PC that also was mounted in the helicopter. The PC logged the radiometer data and allowed easy transfer to the DEC VAX780 for data analysis.

4.4 LANDSAT TM ACQUISITIONS

All possible Landsat TM acquisitions were requested for the Algoma, Sudbury, and Dorset scenes for the month of August 1986. Algoma and Sudbury coverage were requested for May and June 1987. Of the scenes collected, four were considered sufficiently cloud- free to be useful. Image tapes were obtained from NASA GSFC Landsat office and are listed in Table 4.1.

TABLE 4.1. IMAGE TAPES REQUESTED FROM NASA GSFC LANDSAT OFFICE

Path/Row	<u>Date</u>		
19/27	August 13, 1986		
19/27	May 12, 1987		
19/27	June 13, 1987		
22/28	August 18, 1986		

All of the other acquisitions were considered non-usable based upon the positive print of TM band one received from GSFC.

4.5 DATA QUALITY MEASURES

Provisions were made to ensure the quality of the data measurements. During the MER data collection, deck cell measurements of downwelling hemispherical irradiance were taken coincidentally. This ensured that the MER downwelling and upwelling profile measurements were taken while the downwelling irradiance remained constant.

When TM signals were being extracted, band four signals of water surfaces were examined for high standard deviations (> 0.5). If the standard deviation was higher than 0.5, it was assumed that the data were contaminated with either bottom or land reflectance, and they were not used.

Before transmissometer measurements were made, the air voltage was checked and recorded. The transmissometer measurement was only made if the air voltage was in the appropriate range. This air voltage was later used for calibration when calculating attenuation coefficients.

PROBAR measurements were corrected for the time of day and were calibrated using a white card of known reflectance. Instrument calibration was also done in the lab before the field work.

5.0 SUBSURFACE AND AIRBORNE RADIOMETRIC DATA REDUCTION

Radiometric data collected with the Biospherical MER-1000 radiometer, the SeaTECH transmissometer, the PROBAR spectral radiometer, and Landsat TM were reduced as described in the following sections.

5.1 MER DATA REDUCTION

MER-1000 data were first used to interpolate the irradiance data to common depths on a logarithmic scale before computing values of subsurface reflectance. The slope of the depth log-irradiance regression equation defines the average irradiance attenuation coefficient (K). The irradiance attenuation coefficient changes very little within the mixed layer, but rapidly within the transition zone (thermocline). The thickness of the mixed layer was easily determined from the temperature depth profile. Therefore only irradiance measurements from the mixed layer were used to determine K. Downwelling irradiance attenuation for low DOC lakes (Sunnywater and Wolf) and high DOC lakes (Whitepine and Barbara) are shown in Figure 5.1.

Subsurface spectral reflectances were calculated at 2, 4, 6, and 8 meters below the surface. Example reflectance curves are shown in Figure 5.2, along with the DOC and Chlorophyll-a measurements. The impact of DOC and Chlorophyll-a on reflectance is apparent. As DOC increases the blue-green portion of the reflectance spectrum is diminished due to highly selective absorption. Chlorophyll-a also diminishes the measured reflectance below 520 nm, due to absorption. Wavelengths greater than 520 nm absorption are reduced and backscattering is increased. The reflectance calculations at 700 nm are not considered valid since the irradiances are very small and contaminated by sensor noise.

In the spring of 1987 the MER pressure sensor was calibrated so measurement depths were available without depth correction. The pressure sensor in August 1986 sampling period was precise but it was not accurate. A control profile was made during which actual and measured

Figure 5.1 Downwelling Irradiance Attenuation $K_d(\lambda)$

Figure 5.2 Subsurface Reflectance $R(\lambda)$

depths were recorded and a simple linear relationship was found between them.

To obtain reflectance values it was necessary to develop two linear equations describing the relationship between the natural logarithm of irradiance (ln(E)) and corrected depth for both the upwelling and downwelling profiles. The diffuse attenuation coefficient determines the rate of irradiance loss through the water column and is defined by the following equation.

$$K(\lambda) = \frac{-1}{E(\lambda, z)} \frac{dE}{dz}$$

The irradiance data collect at multiple depths were first used to estimate K from the solution to the above equation as given by the following linear form.

$$ln(E(\lambda,z)) = K(\lambda)*z + intercept$$

Depths of 2, 4, 6 and 8 meters were then entered into the linear equation to estimate $\ln(E_u)$ and $\ln(E_d)$. Reflectance at these four depths were then produced using the following equation:

$$R(\lambda,z) = EXP(ln(E_u(\lambda,z)) - ln(E_d(\lambda,z))$$

Where $E_u(\lambda,z)$ = upwelling irradiance at z meters and $Ed(\lambda,z)$ = downwelling irradiance at z meters.

5.2 TRANSMISSOMETER DATA REDUCTION

SeaTECH transmissometer profiles were made at every station coincident with the MER measurements. Voltage measurements were made usually at 2, 4, 6, and 8 meters after an air reading was made at each station.

Corrected voltage was then obtained using the following equation:

where Cvolt = Corrected voltage

Lab Air = Lab air reading = 4.775 volts

Field Air = Field air reading

Mvolt = Measured voltage

Fractional transmission could be determined since it is known that 100% transmission through 25 cm of pure water has a corrected voltage of 5 volts. Fractional transmission through 25 cm of lake water is found using the following relationship:

$$T(664nm) = (Cvolt) / 5 volts.$$

The beam attenuation coefficient (c) can be derived using the fractional transmission in the following equation:

$$c(664nm) = -4 LOG(T(664nm))$$

The reduced transmission and beam attenuation coefficients for all SeaTECH measurements are given as Appendix E.

5.3 PROBAR DATA REDUCTION

One objective in reducing the PROBAR data was to estimate illumination independent reflectance values which could be compared to the MER data derived values. The airborne PROBAR measurements, however, were made complicated by the helicopter blade motion and by the need for irradiance reflectance given the PROBAR is a radiance device. The rotating blade interfered with the downwelling irradiance meter and also possibly with the upwelling radiance measurements as well. The raw data from several dates showed a significant change in downwelling irradiance between measurements taken on the ground using a standardized white reflectance card. This effect was dependent on time of day and date illumination conditions. These conditions necessitated a series of five corrections be made to these data in order to make them compatible to the MER reflectance data. These corrections were (1) for standardized white card reflectance, (2) for airborne conditions, (3) for time of day, (4) for day-to-day variations in sky illumination, and (5) for surface reflectance.

Upwelling radiance, $L_{\rm u}(\lambda)$, and downwelling irradiance values were read for ten 20 nm - wide bands ranging from 433 nm to 710 nm. Reflectance was computed in the following manner:

$$R(\lambda,0) = M(\lambda,0)/E_{d}(\lambda,0)$$
where $M(\lambda,0) = L_{u}(\lambda) * \pi$

All dates show a large change in downwelling irradiance between measurements taken on the ground (white card measurements) and measurements taken when the helicopter was airborne (all lake measurements). This discrepancy was accounted for in the change in helicopter blade tilt. When the instrument was airborne, the blades were tilted at a higher angle, thus allowing more light to reach the downwelling irradiance sensor. A correction was made by producing a second order regression equation of all airborne downwelling irradiances as a function of time. The true white card downwelling irradiance was then estimated using the resultant equation. This correction was made for each PROBAR band.

All data needed to be normalized to one unique white card reflectance for each band. The white card used for correcting the data was known to have a nearly constant reflectance value (.989) for the bands being studied. The white card reflectances were fit to a second order equation using time as the independent variable producing the measured white card reflectance curve. The true lake reflectance is adjusted by the same percent difference as that between the measured white card reflectance (MWCR) the known white card reflectance curve.

$$R(true) = R(measured) \times \left[1 - \left[\frac{MWCR - .989}{MWCR}\right]\right]$$

A final correction was made to PROBAR measurements which was lake-dependent. The assumption was made that no internal lake reflectance was measured in the band centered at 700 nm. This measurement was assumed to be an indication of wave induced surface reflected noise and thus was subtracted at all wavelengths. This correction only changed the offset of the spectral reflectance curve, not its shape.

SERIM

The above and below surface corrected PROBAR reflectances are given as Appendix B.

		 	 · · · · · · · · · · · · · · · · · · ·
en de la companya de La companya de la co			
		3	

6.0 LANDSAT TM PROCESSING METHODS

6.1 LAKE SIGNATURE EXTRACTION

Extraction software was applied to all three TM scenes. Lake signals were extracted from the TM images by finding the latitude and longitude of lakes of interest on topographic maps and using these latitudes and longitude to extract lake signatures from geometrically corrected imagery using extraction software. Nine brightness values were extracted from each lake and their means were used in subsequent processing. A three by three pixel area was extracted and the mean signal and its standard deviation for each band were recorded. To ensure that the spectral signatures represented water and not cloud, shoreline or bottom reflectance, TM band 4 signals were inspected. Average signals in TM band four were found to range between 11.0 and 14.0 with a standard deviation for values within an individual samples of less than 1.0. Thus for samples which had mean values outside this range or with sample standard deviations greater than 1.0 the sample was rejected and considered to indicate a non-water mixed reflectance. The rejected samples were replaced with values extracted from another part of the lake surface. Brightness values were extracted from the approximate center of each lake based upon the latitude and longitude of each lake center. These extracted mean values were then correlated to historical water chemistry data available for the same lakes as discussed in Section 8.0.

The TM data extracted is summarized in Table 6.1.

TABLE 6.1. THEMATIC MAPPER DATA EXTRACTED

Path/Row	Quad	<u>Date</u>
22/27	1	8/18/86
22/27	4	8/18/86
22/27	4	5/27/85
19/27	3	8/13/86
19/27	3	5/22/85

6.2 SOLAR ELEVATION ANGLE CORRECTION

All lake data were corrected for the solar elevation angle of each scene. This correction simply involved dividing each brightness value mean by the cosine of the solar zenith angle.

6.3 ATMOSPHERIC HAZE CORRECTIONS

A haze correction needed to be applied to the TM data so that real comparisons could be made between lakes within and between scenes which had varying amounts of haze distorting the signals. Lakes of equivalent Dissolved Organic Carbon (DOC) concentrations should have similar TM signals in band one but these data showed instead wide variations. The lakes with elevated TM band one counts also had elevated counts in bands two, three, and four. Since band 4 counts represent virtually no internal lake reflectance, it was hypothesized that relative differences between lakes in band four represented differences in atmospheric haze. Linear regression analyses between bands one and four, bands two and four, and bands three and four showed nearly linear behavior but with different slope and a small intercept. Also, these derived slope values were found to be scene dependent. The slopes between bands were derived using regression analyses and used directly in the haze correction algorithms. Thus the correction for haze was both wavelength dependent and scene dependent. The following three equations are the haze correction algorithms for the three TM bands used:

$$TM-1(corr) = TM-1 - (TM-4 \times M_1)$$

 $TM-2(corr) = TM-2 - (TM-4 \times M_2)$
 $TM 3(corr) = TM 3 - (TM 4 \times M_3)$

 $\rm M_{1},\ M_{2},\ and\ M_{3}$ are the slopes between bands one and four, bands two and four, and bands three and four, respectively.

This procedure reduced the impact of haze as indicated by the improved correlation between TM band one signals and DOC (i.e. from 0.62 to 0.83).

7.0 DEVELOPMENT OF A BIO-OPTICAL REFLECTANCE MODEL

7.1 REFLECTANCE MODEL

A TM radiative transfer model was developed to predict possible changes in radiometer signal levels which result from field-measured changes in chemical properties. Work on this model included specific calibration for the Landsat TM sensor. The model treats atmospheric optics, water optics, and the wind ruffled air-water interface. A solar ephemeral model has also been implemented to provide a capability to simulate the entire sun-sensor geometry. For many of the lakes involved in this study absorbing effects of DOC dominate the scattering effects of suspended minerals and organic particles. Under these conditions subsurface reflectance can be estimated as the ratio of backscattered radiation to the total lost by both backscattering (Bb) and absorption (a).

The specific values of a and Bb will depend on the concentrations of silt (mineral particles), chlorophyll-a pigments (C), and DOC. The absorption and scattering cross sections used in the present study were those derived by Bukata [1985] in his detailed optical analysis of Lake Ontario waters. These cross sections are shown in Figures 7.1 and 7.2.

The specific concentrations of each component were used together with these cross sections to estimate the absorption and backscattering coefficient. The following equation gives the general subsurface reflectance model:

$$R(\lambda) = C_0(\lambda) \cdot \frac{Bb(\lambda)}{a(\lambda) + Bb(\lambda)}$$

where $R(\lambda)$ = Subsurface irradiance reflectance

 $C_{O}(\lambda)$ = Constant (typical value = .33)

 $Bb(\lambda)$ = Total backscattering coefficient

 $a(\lambda)$ = Total absorption coefficient

Absorption Cross Sections for Chlorophyll-a, DOC, Suspended Minerals, and the Absorption Coefficient of Pure Water. Figure 7.1.

Figure 7.2. Backscatter Cross Sections for Chlorophyll-a, Suspended Minerals, and the Backscatter Coefficient of Pure Water.

63

This model calculates subsurface reflectances (at the wavelengths measured by the MER) given the concentrations of chlorophyll, DOC, and suspended solids as shown in the following equation:

$$R(\lambda) = C_{O}(\lambda) \cdot \frac{(Bb_{W}(\lambda) + Bb_{C}(\lambda) \cdot [C] + Bb_{SM}(\lambda) \cdot [SM])}{(a_{W}(\lambda) + a_{C}(\lambda) \cdot [C] + a_{SM}(\lambda) \cdot [SM] + a_{DOC}(\lambda) \cdot [DOC] + Bb's)}$$

where R = Subsurface hemispherical reflectance

SM = suspended solid concentration (mg/l)

 $C = \text{chlorophyll concentration } (\mu g/1)$

DOC = Dissolved organic carbon concentration (mg/l)

7.2 MODEL CALIBRATION

Backscattering and absorption values were regressed with the MER-1000 estimated subsurface reflectance at each wavelength producing an estimate of constant coefficient (C_0) which is listed in Table 7.1. The resulting set of reflectance equations can be used to examine the spectral reflectance dependence on DOC and other constituents. The mineral particle concentrations were found to be extremely small, on the order of 0.1 mg/l. If one assumes a chlorophyll-a concentration of 1.0 μ g/l (a typical value) then the DOC reflectance varies between 1% and 6% in TM band one as depicted in Figure 7.3.

7.3 MODEL EXTENSION WITH PROBAR DATA

The PROBAR above-surface reflectance data were collected in August 1986. These data were converted to subsurface reflectances for over one-hundred lakes using a regression procedure (described in Section 8.5).

The model developed for the MER subsurface reflectance data was tested using the PROBAR-predicted subsurface reflectance data. The Marquardt method was used for developing the non-linear model. This method is equivalent to performing a series of ridge regressions and is most useful when the parameter estimates are highly correlated.

Table 7.1.

Reflectance	Model	Coefficient
λ (nm)	ુ	Std. Error
410	0.731	0.1382
441	0.678	0.1193
488	0.525	0.0063
520	0.360	0.0318
540	0.319	0.0373
560	0.301	0.0520
589	0.374	0.0679
625	0.300	0.0753
656	0.345	0.0930
671	0.383	0.0936
694	0.519	0.1156

Figure 7.3. Reflectance Model for Dissolved Organic Carbon (DOC)

Since DOC and chlorophyll, (the two model parameters), have a correlation coefficient of about 0.73, the Marquardt method seemed appropriate.

To estimate how well this model fit the PROBAR predicted subsurface reflectance data, the coefficients produced using these data were compared to those produced using the MER data. The results of using the non-linear model on data from wavelengths of 443, 470, 520 and 540 μ m are listed in Table 7.2.

TABLE 7.2. COMPARISON OF PROBAR AND MER MODEL COEFFICIENTS

	<u>PROBAR</u>	MER
C443 C470 C520 C550	.51 .48 .42 .32	.73 .68 .36
220		

The model fits the data best in the longer wavelengths. At worst, the model coefficients are different by .22, or approximately 30% (for λ =443 nm). At best, there is no difference between the coefficients (λ =550 nm).

A comparison of the actual PROBAR predicted subsurface reflectance and the model-predicted subsurface reflectance was made to test the performance of the reflectance model. The correlation between the predicted and actual subsurface reflectance models was quite high, ranging from .81 to .89, depending on the wavelength. Model-predicted versus PROBAR-predicted subsurface reflectances at 440 nm and 470 nm are shown in Figures 7.4 and 7.5, respectively.

7.4 REFLECTANCE SENSITIVITY TO CHANGES IN WATER CHEMISTRY

The sensitivity of reflectance to changes in DOC is given by the following derivative of the model equation:

Figure 7.4. Model Predicted Versus PROBAR Predicted Subsurface Reflectance at 440nm. PROBAR Data Collected From Algoma and Sudbury Site, August 1986.

Figure 7.5. Model Prdicted Versus PROBAR Predicted Subsurface Reflectance at 470nm. PROBAR Data Collected From Algoma and Sudbury Site, August 1986.

$$\frac{\mathrm{dR}(\lambda)}{\mathrm{d}[\mathsf{DOC}]} = \frac{\mathrm{a}_{\mathsf{DOC}}(\lambda) \cdot (\mathsf{Bb}_{\mathsf{w}}(\lambda) + \mathsf{Bb}_{\mathsf{SM}}(\lambda) \cdot [\mathsf{SM}] + \mathsf{Bb}_{\mathsf{C}}(\lambda) \cdot [\mathsf{C}] \cdot \mathsf{Co}(\lambda)}{\left(\mathrm{a}_{\mathsf{DOC}}(\lambda) \cdot [\mathsf{DOC}] + \mathrm{a}_{\mathsf{C}}(\lambda) \cdot [\mathsf{C}] + \mathrm{a}_{\mathsf{SM}}(\lambda) \cdot [\mathsf{SM}] + \mathrm{a}_{\mathsf{w}}(\lambda)\right)^2}$$

Figure 7.6 shows the change in reflectance sensitivity for a given DOC concentration. The plotted sensitivity values are for the Sudbury site, calculated using the above equation and measured values of DOC and chlorophyll-a.

7.5 MODEL-PREDICTED SENSITIVITY OF TM

The ability to detect a seasonal change using depended on the measured TM reflectance changes, and on the sensitivity of reflectance to changes in DOC and chlorophyll-a pigment concentration.

The impact of DOC changes on reflectance can be calculated using the sensitivity equation in Section 7.4. The expected TM band one signal change per percent subsurface reflectance change was estimated previously to be 2.86 counts/percent. If it is assumed that seasonal changes in DOC are on the order of 50%, then background levels of two to three count changes are projected in the TM response. These predictions are summarized as Table 7.3.

Figure 7.6. Sensitivity of Reflectance to Changes in DOC Concentration for a Clear Lake Typical of the Sudbury Site.

PREDICTED CHANGES IN REFLECTANCE **AND TM BAND 1 COUNTS**

	A I M Counts	1.7	2.0	1.6	1.6	0 6
			1.00	0.80	0.80	0.30
		0.15	0.25	0.50	1.00	1.00
		0.3	0.5	1.0	2.0	3.0
DOC	ANAMISTROS	9.6	4.0	1.6	0.8	0.3

8.0 ANALYSIS OF RADIOMETRIC DATA RELATIONSHIPS

8.1 CHARACTERIZATION OF WATER CHEMISTRY OF STUDY AREA LAKES

The August 1986 water chemistry data collected in this experiment contain twenty-eight in-lake water parameters for 300 lakes across Ontario. Pearson correlation coefficients and their significance probabilities were produced for a subset of these data set and are listed in Table 8.1. There were strong correlations between pH and total inflection point alkalinity and aluminum (.88 and -.75, respectively). The correlation between pH and DOC was found to be much lower at 0.61 but which still indicates a significant relationship exists. A scatter plot of pH and DOC is shown as Figure 8.1. It is evident from these data that the strongest relationship exists for DOC values less than 3.0 mg/1.

8.2 ANALYSIS OF SUBSURFACE IRRADIANCE MEASUREMENTS

Based upon the reflectance model analysis high correlations were expected between lake water chemistry and MER optical measurements. The Pearson correlation coefficients and their significant probabilities are tabulated in Table 8.2 for the August 1986 water chemistry data. In general, there is a high correlation between the short wavelength reflectances ($\lambda < 540$ nm) with Secchi depth (SD), chlorophyll-a (CHLOR), DOC, aluminum (AL), and pH. The high correlations with SD, DOC, and AL support the phenomenological relationships between water chemistry parameters and optical properties as discussed previously in Chapter 2.0. The lower correlations with chlorophyll-a values were expected since pigment concentrations measured in many of these lakes was so small.

Mer spectral reflectances were plotted for selected lakes which are given as Appendix F. The clear acid lakes were found to have spectral reflectances with peaks in the 400-450 nm range and shape similar to that obtained for Sunnywater Lake (see Figure 8.2). By contrast the high DOC lakes have spectral reflectance curves which

Pearson Correlation Coefficient for Water Chemistry Parameters With Their Significance Probabilities Given Directly Below Each Value. Table 8.1.

TIP	0.87665	0.60011	-0.55308	-0.08545	0.27312 0.0212	1.00000	-0.30883	-0.11600 0.3354	0.08820	-0.03466
SO4 TTLCHLA	0.38638	0.63197	-0.39310 0.0007	-0.31333 0.0078	1.00000	0.27312 0.0212	-0.41944	0.17102	0.38174	0.31086
804	-0.07978 0.5085	-0.26801	0.17498	1.0000	-0.31333 0.0078	-0.08545 0.4788	0.04549	-0.27447	-0.41955	-0.20989
AL	-0.74745	-0.62390	1.00000	0.17498	-0.39310	-0.55308	0.29944	0.08366	-0.10660	-0.07001 0.5618
DOC	0.61434	1.00000	-0.52390	-0.26801	0.63197	0.60011	-0.62291	-0.02355	0.30388	0.15893 0.1855
Ŧ	1.00000	0.61434	-0.74745	-0.07978	0.38638	0.87665	-0.37128	-0.12047	0.09888	0.00220
	Ħ.	DOC	٩٢	S04	TTLCHL_A	TIP	TMIM	TM2M	ТЖЗМ	TM4M

Figure 8.1. Dissolved Organic Carbon Versus pH Value for Water Samples Collected From the Algoma and Sudbury Sites, August 1986.

★ ALGOMA▲ SUDBURY

Coefficient for W Rerived Reflec		-0.68363 -0.65564 0.47815 0.75800 0.0904 0.1098 0.2778 0.0483	-0.85863 -0.71163 0.47624 0.75093 0.0294 0.1127 0.3397 0.0853	-0.78658 -0.75139 0.66596 0.78604 0.0359 0.0515 0.1096 0.0361	-0.69532 -0.62782 0.76237 0.59270 0.0828 0.1311 0.0463 0.1608	-0.25555 -0.16285 0.62424 0.14878 0.5802 0.7272 0.1340 0.7502	0.77824 0.80694 -0.26848 -0.72104 0.0393 0.0283 0.5605 0.0675	0.94489 0.92844 -0.56073 -0.78152 0.0013 0.0027 0.2001 0.0487
Table 8.2. Pearson Corre	SD CHLOR	0.87358 -0.40861 -	0.94129 -0.67301 -	0.94829 -0.54928 -	R520 0.90124 -0.52573 -	R640 0.63591 -0.16807 -	-0.65033 0.70762	R589 -0.78855 0.88722
Parameters Wi		0.0102 0.3628	0.0051 0.1429	0.0011 0.2016	0.0058 0.2255	0.2160 0.7360	0.2006 0.0763	0.0435 0.0077

Figure 8.2. Spectral Reflectance for Sunnywater Lake as Derived From MER Data Collected 13 August 1986.

Figure 8.3. Spectral Reflectance for Center Lake as Derived From MER Data Collected 22 August 1986.

have generally lower reflectances values and a spectral peak at approximately 550 nm. For these lakes, the high DOC concentrations (2.0 - 4.0 mg/1) are consistent with the low reflectance values derived for the shorter wavelengths.

The high-DOC basic lakes have curves shaped more like Center Lake (see Figure 8.4). Therefore, the following indicator for characterizing acid and basic lakes using these spectral data could be calculated:

I =
$$\frac{\text{Reflectance } (500 \ \mu\text{m})}{\text{Reflectance } (560 \ \mu\text{m})}$$

This suggested indicator, I, which takes advantage of the difference in the shapes of spectral curves, is greater than 1.0 for acidified lakes and is less than 1.0 for buffered, high DOC lakes.

The MER reflectances were also analyzed using the non-linear reflectance model described in Section 7.0. The suspended solids were assumed to be constant at 0.1 mg/l. The model converged for all the MER data collected and the following coefficients $\mathrm{C}_0(\lambda)$ are shown in Table 8.3.

TABLE 8.3. COEFFICIENTS FOR SUBSURFACE REFLECTANCE MODEL USING MER DATA

	1986		1	987	
Wavelength (µm)	Aug	May 5	May 12	June 13	June 30
488	.524	.388	.523	.779	.89
560	.302	.338	.332	.523	.667

The August data were collected under the best conditions, so the coefficients produced for these data were used as standards to compare the other dates. The May 12 data produced coefficients nearly equal to those produced using the August data. The June reflectance data do not seem to fit the same model suggesting that the water chemistry had

Figure 8.4. Comparison of MER and PROBAR Derived Spectral Reflectances.

changed dramatically and the DOC reflectance model assumptions were no longer valid.

To find out how well the model worked for each date, the correlations between actual and model-predicted subsurface reflectances were calculated. There was no correlation between actual and predicted subsurface reflectance for any of the spring data at $560~\mu m$. For $488~\mu m$ the correlation between actual and predicted reflectances was less than .24 for the two June dates. However, the same correlations for May 5 and May 12 are .93 and .97, respectively. The reflectance differences between actual and predicted reflectances were less than 1.15% for these two dates.

8.3 ANALYSIS OF SURFACE MEASUREMENT DATA

The PROBAR-derived surface reflectance data were found to be highly correlated with the MER subsurface reflectance data as shown by the examples in Figure 8.3. To determine if the correlations of water chemistry with PROBAR data were similar to those with the MER data, another correlation matrix was calculated. Table 8.4 contains PROBAR correlations with water chemistry at multiple wavelengths. The correlations of reflectance with the water chemistry are much lower, but still reach -.80, -.68, and -.64 for DOC, pH and chlorophyll. This was expected, however, since varying lake surface waves and atmospheric haze introduced more noise in the signal measured by the PROBAR.

8.4 THE COMPARISON OF SURFACE AND SUBSURFACE MEASUREMENTS

An experiment was conducted to determine the relationship between the surface and the subsurface measurements of lake volume reflectance. The surface reflectance was measured using the PROBAR spectral radiometer mounted in a helicopter and the subsurface reflectance was measured using the MER submersible radiometer. Modeling theory predicted that the relationship between these two measurements would be

	Parameters With PROBAR Derived Reflectances. PH DOC TIP TTLCHL_A AL SO A4108 -0 73158 -0 44737 -0 82890 0 57202 0 5750	D0C D0C	Parameters with Phobah Denvet PH DDC TIP TTLCHL_A	Parameters With PHOBAH Derived Reflectances. PH D0C TIP TTLCHL_A AL	Reliectar AL	S04
,	0.0001 0.0001 0.0001	0.0001	0.0001 0.0001 0.0001 0.0001 -0.86696 -0.76080 -0.46922 -0.63443 0.0001 0.0001 0.0001	0.0001 -0.63443 0.0001	0.67276	0.58581 0.0001
φ.	0.0001	-0.75960	-0.66094 -0.75960 -0.47927 -0.63707 0.0001 0.0001 0.0001 0.0001	-0.63707	0.56906	0.58866
Ø .	0.0001	-0.79678 0.0001	-0.68095 -0.79678 -0.50436 -0.64002 0.0001 0.0001 0.0001 0.0001	-0.64002 0.0001	0.58672	0.82239
8	0.0001	-0.78275	-0.62813 -0.78275 -0.47444 -0.58288 0.0001 0.0001 0.0001 0.0001	-0.58288	0.54829	0.59749

linear. Therefore, the relationship between PROBAR and MER measurements could be described using the equation:

$$R_i (mer) = m \times R_1 (PROBAR) + b$$

where m = slope

b = y-axis intercept

 R_i = reflectance at band i

The results of a linear regression analysis of each spectral band and the corresponding statistical significance ($\alpha = .05$) of each regression are found in the following table:

Wavelength	<u>b</u>	<u> </u>	Significant $(a < .05)$
443	33	.53	yes
470	.215	.44	yes
490	.43	.42	yes
520	.55	.44	yes
550	1.17	.19	no $(p = .36)$
580	1.04	.14	no $(p = .76)$
610	-1.11	1.59	yes
640	57	1.86	yes
670	27	1.49	yes
700	0.0	1.0	yes

The results shown in Section 5.5 support the hypothesis that there is a linear relationship between the MER and the PROBAR data for all but wavelengths 550 and 580 nm. At most wavelengths, then, subsurface lake volume reflectance can be predicted with reasonable accuracy when only the PROBAR reflectance data are available. This result is significant since acquiring lake reflectance data with the PROBAR is less expensive and quicker that with the in situ measurements.

8.5 ANALYSIS OF TM MEASUREMENTS

The haze normalized TM data for August 1986 show sensitivity to lake DOC concentrations as indicated by the data plotted in Figure 8.5. These results confirm the model predicted sensitivity of the TM band on signals to changes in DOC. The model predicted a DOC reflectance range of about 5% which corresponds to a 14.3 signal count spread in the TM band one data. TM data from the Sudbury site are consistent with the predicted spread in DN counts. The Algoma data appear to lack sensitivity to changes in DOC which is likely due to the fact that most lakes in the Algoma region have high values of DOC and chlorophyll-a.

8.6 MULTITEMPORAL RELATIONSHIPS

Multitemporal analyses could be made for TM and MER data only since these were the only measurements made in the spring of 1987. PROBAR multitemporal relationships could not be examined since this instrument was not available to the project in 1987.

8.6.1 MER Multitemporal Analysis

The corrected MER data yielded several multitemporal trends. These trends differed depending on the buffering capacity of the lake. Acidified lakes, such as Dougherty and Wolf, (TIP < 0), had small multitemporal reflectance changes from 500 μm to 600 μm (< .4% reflectance). All the acid lakes showed large reflectance differences in to 400 μm to 500 μm region. Each lake showed a decrease in reflectance form August, 1986 to May 5, 1987, and then an increase in reflectance from May 5, 1987 to May 12, 1987 between 400 μm to 500 μm . These data for three lakes' reflectances at 441 μm are tabulated below:

\$.

TM Band 1 Versus Dissolved Organic Carbon Using the August 13, 1986 (P19, R27) and August 18, 1986 (P22, R27) Data Sets. Figure 8.5.

★ ALGOMA▲ SUDBURY

Name	8/86	5/5/87	5/12/87
Sunnywater	6.5	-	7.4
Wolf	3.2	2.1	3.2
Dougherty	3.8	2.3	2.6

In contrast, the buffered lakes, (TIP > 0), did not show a large difference (> .4% reflectance) in the 400 μm to 500 μm region but did show large multitemporal differences from 500 μm to 600 μm . At 560 μm , the basic lakes increased in reflectance form August 1986 to May 5, 1987. No consistent change in reflectance from May 5, 1987 to May 12, 1987 was found for the buffered lakes. The reflectance data for 560 μm measured from buffered lakes are found below:

Name	8/86	5/5/87	5/12/87
Centre	1.8	2.6	1.7
Whitepine 2	1.2	1.6	2.0

In conclusion, differences in multitemporal MER reflectance trends between buffered and acidified lakes were found. Acidified lakes had a decrease in reflectance for the 400 μm to 500 μm region and relatively no change for the 500 μm to 600 μm region. Buffered lakes had an increase in reflectance for the 500 μm to 600 μm region and relatively no change to the 400 μm to 500 μm region.

8.6.2 TM Multitemporal Analysis

The TM band one seasonal change patterns are similar to those indicated for the August 1986 data. The August low DOC lakes were found to have larger TM DN values than with the May 12, 1987 and June 13, 1987 collection dates. These data are shown in Figures 8.6 and 8.7, respectively. The extracted and atmospherically normalized TM data are given as Appendix G. The size of the TM band one count changes for Sudbury are substantially larger than predicted. Furthermore,

TM Band 1 Versus Dissolved Organic Carbon Using the May 12, 1987 (P19, R27) Scene Data.

Figure 8.6.

TM Band 1 Versus Dissolved Organic Carbon Using the June 13, 1987 (P19, R27) Scene Data. Figure 8.7

ERIM

these count differences suggest a two to three percent change in subsurface reflectance, needed a greater DOC change sensitivity than predicted in Table 7.3.

Multitemporal differences were calculated for the following pairs of dates:

August 1986 - May 1987 August 1986 - June 1987 June 1987 - May 1987

These differences were analyzed to determine whether or not they aided in identifying acidified and buffered lakes.

The multitemporal changes in MER-derived subsurface reflectance were used to determine the expected changes in TM signal counts for bands one and two using the conversion factors given in Section 2.5. The expected changes in TM signal counts for band two were all found to be within the noise level for band two data. Therefore, the band two multitemporal differences were insignificant for the 1986-1987 scene pair. Furthermore, approximately 90% of the TM band 1 differences were also in the noise level. As a result, obvious multitemporal differences using TM data were not found.

The majority of the multitemporal analyses were based on the August - May scene pair. When all of the lakes (n=41) are analyzed for significant differences $(\alpha=.1)$ between August and May reflectance changes, no difference is found between acidified and buffered lakes.

Another test was made to determine if the August - May TM band one differences were a function of DOC, TIP, chlorophyll and/or aluminum levels measured in 1986. A multivariate regression analysis was done and all of the parameter estimates were insignificant (α = .5). These results lead to conclusion that the TM band one differences were not a function of water chemistry.

ERIM

Data were also extracted from a May 22, 1985 scene for the Sudbury site and the differences in TM band 1 were formed with the August 13, 1986 scene. These differences were then compared to DOC values collected in August 1986. The results are shown in Figure 8.8 and indicated a possibly strong seasonal relationship to DOC concentrations and especially for those lakes with less than 3.0 mg/1 DOC.

8.7 ANALYSIS OF TRANSMISSOMETER ATTENUATION DATA

A study was conducted which examined the relationship between the water attenuation coefficient (α) at 600 μ m and the suspended solid concentrations in eight lakes. The attenuation coefficient correlates positively with the suspended solids (ρ = .845). These data are shown in Figure 8.9 and shows and a linear relationship between the attenuation coefficient and the suspended solids. This further supported the possibility of suspended solid concentrations affecting the accuracy of the subsurface reflectance model since the suspended solids concentration correlates with the attenuation coefficient and the attenuation coefficient affects lake volume reflectance.

TM Band 1 Multitemporal (August 13, 1986 and May 22, 1985) Differences Versus DOC Concentration Sudbury Field Site August 1986 Water Chemistry Data. Figure 8.8.

Beam Attenuation Coefficient Versus Suspended Solids Concentration 1987 Spring/Summer Data. Figure 8.9.

9.0 ANALYSIS OF ECO-PHYSICAL CLUSTERS

9.1 RELATIONSHIP OF WATER CHEMISTRY WITH ECO-PHYSICAL CLUSTERS

Since the eco-physical clusters represented unique acidsensitivities across the Ontario test sites, it is reasonable to
expect to find significantly different water-quality parameters for
lakes that occurred in different clusters. An analysis was performed
to test the hypothesis that the mean water-quality parameters were
different at the 5% significance level between clusters. The following water variables were analyzed: dissolved organic carbon (DOC),
Secchi depth, sulfate concentration, aluminum ion concentration, pH
and total chlorophyll-a concentration. This analysis is summarized in
Table 9.1.

TABLE 9.1. RESULTS FOR TUKEY'S STUDENTIZED RANGE TEST FOR SIGNIFICANTLY DIFFERENT MEAN WATER-QUALITY PARAMETERS

<u>Chlorophyll-a</u>	DOC	Secchi Depth	Sulfate	<u> Aluminum</u>	рН	
1-7 1-9 1-8 1-5	2-5 2-9 2-7 4-5 4-7 7-5 4-9 3-7 1-7 2-8 3-5 4-8 7-8	1-7 2-7 2-9 4-7 5-7	7-1 7-2 7-3 7-4 8-9 1-2 7-8 7-9 9-1 9-3 9-4 5-1 5-4 3-1 1-6 5-7	7-5 3-7 4-5 5-9 7-8	1-2 8- 1-3 8- 1-4 8- 1-5 8- 1-6 3- 1-7 2- 1-8 4- 1-9 4- 1-10 4- 6-2 4- 6-3 4- 6-5 3- 6-7 3- 6-9 5- 10-2 9- 10-3 10-5 10-7 10-9	3 5 7 9 7 2 3 5 7 9 2 7 7

PRECEDING PAGE BLANK NOT FILMED

ERIM

Clustering was especially successful in separating different levels of lake pH. For significantly different clusters, the most acid-sensitive clusters (5,7,9) had lake waters with lower DOC and pH values and a higher sulfate concentration than those with less sensitivity (1,2,3,4). Thus, the clustering analysis appears to have produced significant eco-physical clusters that contain lakes that also have some significantly different water-quality parameters. Of the three most significantly different water-quality parameters (DOC, pH and sulfate), changes in DOC provide the basis for remote sensing monitoring and identification.

9.2 RELATIONSHIP BETWEEN TM SIGNALS AND ECO-PHYSICAL CLUSTERS

An analysis was performed to determine if significant differences existed among the eco-physical clusters based on the TM signals of lakes within the clusters. For the August 1986 Algoma and Sudbury data sets, two groupings were identified. Group A (lakes in clusters 5, 7 and 9) had mean signals (73.5 to 75.9) that were significantly different (α = .05) than signals (64.8 to 67.5) from lakes in group B (clusters 2, 4 and 8). The results are shown in Table 9.2.

TABLE 9.2. TM RELATIONSHIPS TO ECO-PHYSICAL SENSITIVITY -- AUGUST TM 1 DATA

Group	Mean TM 1	Cluster	Significantly Different at 5%
Α	75.86	7	2, 4, 8
Α	74.14	9	2, 4, 8
Α	73.47	5	2, 4, 8
В	67.50	8	5, 7, 9
В	66.37	2	5, 7, 9
В	64.77	4	5, 7, 9

The mean eco-physical sensitivity of group A clusters was 7.44 and group B mean sensitivity was 5.85. The largest signals measured were from cluster 7 with a mean sensitivity index of 7.07 and the smallest

ERIM

from cluster 4 with a sensitivity index of 6.07. The primary difference in these two eco-physical clusters was the soil type and soil depth over the underlying bedrock. Cluster 7 had shallow (i.e. less than one meter) sandy soils while cluster 4 had soils of mixed types (sand, clay, loam) that had depths greater than one meter.

9.3 RELATIONSHIP BETWEEN TM MULTITEMPORAL DIFFERENCES AND ECO-PHYSICAL CLUSTERS

Examination of the August 1986 - May 1985 difference signals for TM band one produced similar results which are shown in Table 9.3. Group A and group B contained the same clusters as in Section 9.2 and the largest and smallest mean differences were found in clusters 7 and 4, respectively.

TABLE 9.3 TM RELATIONSHIPS TO ECO-PHYSICAL SENSITIVITY ANALYSIS OF VARIANCE OF AUGUST-MAY DIFFERENCE

Group	Mean Diff	Cluster	Significantly Diff. at 5%
Α	4.94	7	2, 4, 8
Α	2.91	9	2, 4, 8
Α	2.68	5	2, 4, 8
В	0.61	8	5, 7, 9
В	-0.96	2	5, 7, 9
В	-2.45	4	5, 7, 9

9.4 Analysis of TM Signal Changes Due to Acid Deposition Changes

This analysis examined the relationship between the August - May signal differences from polygons that have similar eco-physical properties with the exception of sulfate deposition. For this case, lakes were selected from polygons with sandy soils over granitic rock types and the sulfate deposition was 1.5 or 2.5 g/m2/yr. The TM band one signals were found to be significantly different (at 5% level) based upon deposition level alone. This preliminary analysis suggests that

TM signal seasonal changes may be dependent upon changes in acid deposition.

9.5 ANALYSIS OF DOC REFLECTANCE SENSITIVITY

In addition to seasonal analyses, the spatial aspects of DOC reflectance sensitivity were investigated. Measured water-quality parameters were used together with the equation given Section 7.4 to calculate a lake value of reflectance sensitivity based to change in DOC concentration. The larger the derivative of reflectance with respect to DOC the more sensitive lake reflectance is to changes in DOC. As shown in Table 7.3, a reflectance sensitivity value of 4.0 corresponds to an expected count change in TM band 1 of at least two counts. The lake DOC sensitivity values were analyzed with the ecophysical clusters and the mean sensitivity was determined for each cluster as shown in Figure 9.1. These results indicated that clusters 5, 7, 8 and 9 have lakes most sensitive to DOC changes. These clusters also have the higher stratification sensitivity index values.

This preliminary analysis shows that TM band one seasonal difference signals will differentiate acid-sensitive from acid-insensitive areas.

Figure 9.1. Mean DOC Induced Reflectance Sensitivity for Each Ecophysical Strata Estimates Based Upon August 1986 Water Chemistry Measurements.

10.0 CONCLUSIONS AND RECOMMENDATIONS

10.1 GENERAL CONCLUSION

Modeling, field measurements, and TM observations suggest that TM is useful to identify acid sensitive lakes and to monitor water quality changes associated with lake acidification.

10.2 SPECIFIC CONCLUSIONS

- Modeling surface and subsurface reflectance measurements have shown the important relationships between lake optical properties and water chemistry.
 - a. A simple DOC reflectance model accounts for observed subsurface hemispherical reflectance and also for the companion airborne (PROBAR) reflectance measurements.
 - b. We found that clear acid sensitive lakes can be distinguished from the colored high DOC lakes using PROBAR data. The colored lakes tend to have greater buffering capacity than clear lakes in acid sensitive areas.
 - c. The blue-green reflectance of clear lakes is highly sensitive to the presence of DOC. Modeling predicts a one percent change in subsurface reflectance for an expected seasonal fluctuation of about 50% in DOC concentration.
- 2. Modeling has shown that TM is sufficiently sensitive to monitor expected lake reflectance associated with acid deposition and acidification.
 - a. An historical TM seasonal pair (August 1986 May 1985) for the same Sudbury Lakes in a normal snowfall year supports our expectations but lacks the chemistry and in situ optical data needed for hypothesis validation.
 - b. The expected seasonal changes (August 1986 to May/June 1987) in water chemistry did not occur nor did we observe

PRECEDING PAGE BLANK NOT FILMED

- a significant change in TM response. This lack of change may be due to the unusually small snow pack and spring runoff. While these TM data and water chemistry are consistent with our hypothesis, they do not validate it.
- c. In areas of high acid deposition Landsat TM DN values were found to separate high DOC lakes (moderate acidity) found to separate high DOC lakes (moderate acidity) from low DOC lakes (high acidity). The expected TM band one signal change per percent subsurface reflectance change was estimated to be 2.86 counts/percent. In clear acid lakes seasonal change of two or three counts are expected from DOC fluctuations.
- 3. Stratification of eco-physical properties provides a way to locate areas which are sensitive to acid deposition.
 - a. When stratification of eco-physical properties was applied to our study sites, we could identify acid sensitive areas and use TM to pick lakes which are likely to be sensitive to acid deposition.
 - b. Clustering of eco-physical strata suggests that areas with shallow sandy soils over slow weathering granitic bedrock types are most sensitive to acid deposition and lakes located within these areas will have lower concentrations of DOC and lower pH values than for other soil and bedrock types.
 - c. TM band one lake response was found to be related to ecophysical sensitivity. The (August 1986 - May 1985) TM seasonal pair produced signal differences in eco-physically sensitive strata (1-6 DN) but not so in non-sensitive strata (-2 to 0 DN).
 - d. Nearly identical and sensitive eco-physical strata with different sulfate deposition rates were found to have different TM lake signal response.

10.3 RECOMMENDATIONS

While studies thus far are consistent with our seasonal change hypothesis they do not confirm its validity. Further study is needed to provide confirmation to the above results.

- 1. Collect lake chemistry and TM data in years of typical snowfall to demonstrate the capability of using TM data to monitor acidification under a wider range of environmental conditions (i.e., normal snowfall years).
- 2. Develop a TM based capability for assessing effects of acid deposition on terrestrial vegetation. Apply the vegetation monitoring technique and compare with lake monitoring technique.

·	

REFERENCES

- Almer, B., W. Dickson, C. Ekstrom, and E. Hornstrom, "Sulfer Pollution and the Aquatic Ecosystem." In <u>Sulfer in the Environment: Part II, Ecological Impacts</u>, John Wiley & Sons, New York, NY, pp. 271-311, 1978.
- Bukata, R.P., J.E. Bruton, and J.H. Jerome, Application of Direct
 Measurement of Optical Paramters to the Estimation of Lake Water
 Quality Indicators, CCIW Scientific Series Report 140, 1985.
- Fortescue, J.A., and V.H. Singroy, "Remote Sensing as an Aid in Planning Regional Geochemical Surveys in the Canadian Shield." In Fourth Thematic Conference: Remote Sensing for Exploration Geology, San Francisco, CA, April 1985. In On Geology and Remote Sensing, Las Vegas, NV, November 1985.
- Malley, D.F., D.L. Findlay, and P.S. Chang, "Ecological Effects of Acid Precipation on Zoplankton." In <u>Acid Precipation Effects on Ecological Systems</u>, Ann Arbor Science Publishers Inc., pp. 297-327, Ann Arbor, MI, 1982.
- Schofield, C.L., "The Ecological Significance of Air Pollution Induced Changes in Water Quality of Lake Districts in the Northeast."

 Trans. Northeast Fish and Wildlife Conference, pp. 98-112, 1972.
- Yan, N.D., Effects of Changes in Changes in pH on Transparency and Thermal Regimes of Lohi Lake, Near Sudbury, Ontario, Vol. 40, Canadian J. Fisheries and Aquatic Science, pp. 621-626, 1983.
- Effler, S.W., G.C. Schafran, and C.T. Driscoll, <u>Partitioning Light</u>
 <u>Attenuation in an Acidic Lake</u>, Vol. 42, Canadian J. Fisheries and Acquatic Science, pp. 1707-1711, 1985.
- Almer, B., "Effects of Acidification on Swedish Lakes," Ambio, Vol. 3, No. 1, p. 30, 1974.
- Chan, W.H., A.J.S. Tang, and M.A. Lusis, <u>Precipitation Concentration and Wet Deposition Fields of Pollutants in Ontario, September 1980 to December 1981</u>, Report No. ARB-61-83-ARSP, Ontario Ministry of the Environment, p. 42, 1983.
- Chow, V.T., <u>Handbook of Applied Hydrology</u>, <u>A Compendiums of Water-Resources Technology</u>, McGraw-Hill Book Co., pp. 19-10, 1964.
- Davis, R.B., D.S. Anderson, and F. Berge, "Palaeolimnological Evidence that Lake Acidification is Accompanied by Loss of Organic Matter," Nature, Vol. 316, pp. 436-438, August 1, 1985.

ERIM

REFERENCES (Concluded)

- Effler, S.W., G.C. Schafran, C.T. Driscoll, "Partitioning Light Attenuation in an Acidic Lake," <u>Canadian J. Fisheries and Acquatic Science</u>, Vol 42, pp. 1707-1711, 1985.
- Harris, R.J., A Primer of Multivariate Statistics, Academic Press, Inc., New York, NY, pp. 190-195, 1985.
- Hendry, C.D., and P.L. Brezonick, "Chemical Composition of Softwater Florida Lakes and their Sensitivity to Acid Precipitation," <u>Water</u> Resources Bulletin, Vol. 20, No. 1, pp. 75-86, 1984.
- Howard, R., and M. Perley, <u>Acid Rain: The Devastating Impact on North</u>
 America, McGraw-hill Book Company, pp. 11-38, 1982.
- Keller, W., and J. Roger Pitblado, <u>Water Quality Changes in Sudbury Area Lakes, 1974-76 to 1981-83</u>, APIOS Report No. 007/85, Ontario Ministry of the Environment, p. 2, 1985.
- Pitbaldo, J.R., W. Keller, N.I. Conroy, "A Classification and Description of Some Northeastern Ontario Lakes Influenced by Acid Precipitation," <u>Journal of Great Lakes Research</u>, 6(3), pp. 247-157, 1980.
- Swedish Ministry of Agriculture Environment '82 Committee, "Acidification Today and Tomorrow." A Swedish study prepared for the 1982 Stockholm Conference on the Acidification of the Environment, S. Harper, trans., pp. 30-57, 1982.
- Yan, N.D., "Effects of Changes in pH on Transparency and Thermal Regimes of Lohi Lake, Near Sudbury, Ontario," <u>Canadian J. Fisheries and Aquatic Science</u>, Vol. 40, pp. 621-626, 1983.

APPENDIX A ECO-PHYSICAL CLUSTER ANALYSIS

The maximum likelihood method was used to produce 10 clusters of polygons based on the sensitivity values for percent cover, vegetation type, soil depth, soil texture, bedrock type, relief and sulfate deposition. The data are sorted by cluster. Descriptions for each polygon are in the printout. The "cluster" data are either missing data or have vegetation types which were not used in the data.

-----CLUSTER=.----

SO4_DEPO	5-2.	2.0-2.5	0-2	2-0	2.0-2.5	2.0-2.5		2.0-2.5	0	2.6-2.5	0	2.0-2.5	1 1	E		2.5-3.0	۳. ش	2.5-3.0	 	.5-3	S.	2.5-3.0	5	קי		5-3	. 5-3.	9	2.5-3.6	5-3	5-3	2.5-3.0		2.5-3.6	, ru ru
RELIEF	ROLLING UNKNOWN UNKNOWN LEVEL	LEVEL ROLLING FVEL	LEVEL EVEL	י ה ה ה	LEVEL	LEVEL	CNKNOWN	LEVEL	LEVEL		LEVEL	LEVEL	LEVEL	CNKNOWN	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL	LEVEL	ROLLING	ROI I ING	LEVEL	LEVEL	Z#OXXX	UNKNOWN	CNKNOWN		רבעבו העה	LEVEL	ROLLING	LEVEL	LEVEL	LEVEL EVEL	LEVEL
SENSI	WODERATE HIGH HIGH HIGH	H51 H51 H51 H51 H51 H51 H51 H51 H51 H51	HICH		HIGH MODERATE	HICH	HIGH	LOW HIGH	MODERATE	MODERATE	MODERATE	MODERATE	MODERATE	HIGH	HIGH	571	н	HIGH	HIGH	HIGH	HIGH	55	HIGH	HICH	HOIH	HIGH	HIGH	575		HIGH	HIGH		MODERATE	1011	MODERATE HIGH
BEDROCK	પત્રવ છ	W 4 G) - (-) et (- 6	w 4	m	ৰ গে	· 03 ·	4 4	m)	m 4	1 4	4	4 4	4 4	4	4 4	• ◀	4	∢ .	4 4	• 🔻	4 1	া ব	4	4	4 -	4 4	4	4	4	4 4	1 4	4 4
TEXTURE	SAND SAND SAND SAND	SAND SAND	SAND	CLAY	ORGANICS LOAM	SAND	SAND	CLAY SAND	LOAM	M M	LOAM	M C C C C C C C C C C C C C C C C C C C	LOAM	SAND	SAND	O ON ON O	SAND	ONAN-	SAND	SAND	SAND	O ON AND	SAND	SAND	SAND	SAND	SAND	O SANO	ON A S	SAND	SAND	SAND	LOAM	ORGANICS	
ОЕРТН	SHALLOW DEEP SHALLOW DEEP	DEEP SHALLOW DEEP	SHALLOW	DEEP	ANY DEEP	DEEP	DEEP	DEEP DEEP	DEEP	0 EEE T	DEEP	DEEP	DEEP	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	DEEP	SHALLOW		SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	DEEP	SHALLOW	DEEP	DEEP	ANY LLC	DEEP SHALLOW
VEG	BARREN MIXED MIXED AGRIC		BARREN	AGRIC	AGRIC	AGRIC	SC U.CON	AGRIC UP CON	AGRIC	AGRIC	AGRIC	AGRIC	AGRIC	LO CON	CRBAN		AGEHROWD	AGRIC	AGRIC	AGRIC	AGRIC	AGRIC	AGRIC	SCLBARE	MIXED	MIXED	SCLBARE	MIXED	AGEHROWD	AGEHROWD	AGEHROWD	AGEHROWO	AGEHROWD	AGEHROWD	AGEHROWD AGEHROWD
PERCENT	0000 1000 4-4-0 0000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 4	4	0 4 - 0 0 4 - 0	4-6	4	0 4 1 0 0	4	2 4 1 2 2 0	4	0 4-0	0 4 4 9 0	7	4.	0 0 4 1 0 0	4	0 4 - 0 0 4	1 4	4	4	0 4 - 6 0 0	4	0.4-0	2 (2) 1 (4) 2 (4)	4	4.	4.	0 0 4 1 0	4	4	4	0.4-0	1	4 4
POLYGON	48 66 73 191	2 2 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	280	302			318	328 328	331	33 34 34 5	351	323	407 404	439	443	4 4 4 4 4 0	446	455	457	458	459	460	464	465	4 7 4 5 7 4	477	478	6/4	4 4 28 2 2 0	491	499	200	524	527	528 529
088	~ W W 4		- 00 0	10	11	6.4	15	16	8	200	21	22	2 2	25	56	28	29	30	3.5	3 6	34	3 3 3 3	37	8 6	ა 4 ა დ	4	42	4 .	4 4 4 rc	4	47	4	4. n	2 5	53

----CLUSTER=.-----

SO4_DEPO	ا ا						1					Ξ.		E)	1		,	֓֞֝֜֝֞֜֜֝֓֓֓֓֓֓֓֓֜֜֜֜֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֡֓֜֡֓֜֡֓֓֡֓֜֡֓֡֓֡֓֡֡	ĺ		ا ر	9	6	-0	9	6	6	6	6	9 4	9 6	6	6	6	6	0		γ̈́	1		SO4_DEPO		1.0-1.5				1.5-2.0	
RELIEFS	UNKNOWN							_											ONKNOWN ONKNOWN			•					LEVEL		į							LEVEL					RELIEF	ONT 100			LEVEL	ROLL ING	ROLLING	1
SENSI	HIGH	HIGH	HIGH	H	201		5 7 5		1011	1011	HUE	HOLL	HIGH	HIGH	HICH	HIGH	HIGH	HICH	HIGH	1571	1511			1511	35	151	HIGH	нІСН	HIGH	HOIH	MODERAIL	5 1 1	513	HIGH	HIGH	HICH	HIGH	нісн	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SENSI		MODERATE	MODERATE	HIGH	MODERATE	MODERAIE	571
BEDROCK	•	, 4	4	4	∢ '	₫ '	4 -	4 -	٠.	• •	. 4	· •	4	•	4	4	4	∢	∢	4	∢ (- 0	4 -	4 •	1 4	• •	• ◀	4	4	4	en ·	4 4	7 <	া খ	4	4	4	₹		 	BEDROCK		4 (, m	4	က	m 4	ŧ
TEXTURE		SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SANC	O CAND	SAND		N × ×	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	ORGANICS	SAND	ONAN	ON W	QNA.	ONAS	SAND	SAND	ORGANICS	SAND	ON A S	ON V	SAND	SAND	SAND	, ,	-CLUSIER=1	TEXTURE		SAND	ON TO	SAND	SAND	SAND	SAND
DEPTH	•	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLON	SHALLOW SHALLOW	SHALLOW	SHALLOW SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	OEEP	SHALLOW	AN	DEEP	SHALLOW	OFF.		SHALLOW	SHALLOW	SHALLOW	¥N⊀	SHALLOW	SHALLOW	WO 1 14 10	DEFP	SHALLOW	DEEP	į		DEPTH		DEEP	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW
VEG		MIXED	HARDWOOD	SCLBARE	SCLBARE	SCLBARE	CONTFER	SCLBARE	SCLBARE	SCLBARE	CONTFER	MIXED	SCABARE	SCRUME		MARUWUU CC. DA DE	30.40.00 0.00.40.00	SCERARE	HARDWOOD	WIXED	HARDWOOD	HARDWOOD	AG&HRDWD	ACEHROWD	AGEHROWD	AGEHROWD	AGEHROWD	AGENEONO	A CENTRO TO	HARDWOOD	HARDWOOD	AGEHROWD	AGEHRDWD	AGEHRDWD	AGEHROWD	A CEHROWD	OWCON A	AGEHROWD			VEG		MIXED	CONTREK	KI KI KI KI	CONIFER	CONIFER	HARDWOOD
PERCENT		04-0	1 4	6	4	-6	0-49	4	0-49	50-74	50-74	50-74	50-74	50-74	75-99	50-74	2 t	50-14 14-14	7 - 00	0.00	4-6	6-49	0-49	6-49	6-49	0-49	6-49	6-49	0.4-0	0 5 4 4 0 0	4-6	0-49	0-49	6-49	0-40	0-40	20 c	00 1 1 2 4 2 0			PERCENT	l	4	4	200 24 - 200 200	4	6-49	4
POLYGON		534	535	330	20.00	9 0	279	541	542	543	544	545	546	547	548	549	550	551	552	2 4 4	+ u	, r,	573	574	575	530	581	584	631	633	450	0.49 0.48	649	650	652	656	657	666 693		1 1 1 1 1 1 1 1	POLYGON		4	18	2.0	310	36 36	45
OBS.	0	54	35	10	. a) C	n 6	20	4 6	6.6	64	65	99	29	89	69	7.0	71	72	· ·	4 L	0 4	0 1	- 8	6.2	00	81	82	83	4 6		6 G	. 00	68	96	91	92	9 9 8		1 1 1 1	SAC	3	56	96	97	90 C	100	101

---CLUSTER=1---

SO4_DEPO	1.5-2.0	1.5-2.6	1.5-2.0	1.5-2.0	œ (, ,	2	8	-5		1.3-2.0		-2.		1.5-2.1		1.5-2.0	1.5-2.0	1.5-2.0	1.5-2.0	1.5-2.6	1.5-2.1	1.5-2.0	1.5-2.0	2.0-2.5		2.6-2.5	0	2.0-2.5	9	2-6	2-0	0	. 0-2		.6-2	.6-2	2.0-7.0		9	ė	•	2.5-3.0	,
RELIEF	ROLLING	STEEP	ROLLING	ROLLING	LEVEL	POI TNO	ROLLING	ROLLING	ROLLING	ROLLING	BOLL ING	ROL TNG	ROLLING	LEVEL	STEEP	FVE	ROLLING	STEEP	ROLLING	STEEP	STEEP	71117	STEFP	LEVEL	LEVEL	ROLLING	ROLLING POLLING	ROLLING	LEVEL	LEVEL	LEVEL	LEVEL EVEL	LEVEL	LEVEL	LEVEL	LEVEL	רבעבר נייני	רבי העבר העבר	FVE	1 1 1	LEVEL	ROLLING	OLLI	LEVEL	
SENSI	HIGH	511	HIGH	HIGH	HIGH	55	HIGH	HIGH	HICH	HIGH	511	HIGH	HIGH	HIGH		MODERATE		HICH	HIGH	HIGH	HIGH	1	HOLH	нІсн	HIGH	MODERATE	MODERATE	MODERATE	HIGH	HUI	500	HICH	HIGH	HICH	HICH	¥0.5	5	530		₩0 	LOW	MODERATE	MODERATE	MODERATE	
BEDROCK	m	r 4	4	∢ .	∢ ≺	1 4	4	4	4	4 4	1 4	4	4	◀ •	₹ ₹	רח	•	4	₹,	∢ .	4 (*	o ⊲	• ◀	4	4	m •	4 (*)	m	m	m c	7 (*	m	ന	m ·	m ·	4 (9 0	0 4	4	4	m	က	m (n m	
TEXTURE	SAND	SAND	SAND	CNAS	OVANO OVANO	SAND	SAND	SAND	SAND	ONAN	SAND	SAND	SAND	OVA	ONAN ONAN	SAND	SAND	SAND	SAND		ON TO	SAND	SAND	SAND	SAND	O VANO	SAND	SAND	24.	2 2	ON A V	SAND	SAND	SAND	QVV V	CLAY		CLAY	CLAY	CLAY	CLAY	SAND	SAND	SAND SAND	
DEPTH	DEEP	DEEP	SHALLOW	SHALLOW	0.00 0.00 0.00 0.00 0.00	SHALLOW	OFFF	7 C	SHALLOW	SHALLOW	DEEP	SHALLOW	ביייי היייי	SHALLOW	DEEP	DEEP	DEEP	DEEP	DEFE	SHALLOW	SHALLOW	DEEP	ביי מיי מיי	DEFP	DEEP	DEEP	OEEP	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	י ה ה	ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	DEEP	DEEP	DEEP	DEEP	SHALLOW	¥	SHALLOW								
VEG	CONIFER	HARDWOOD	HARDWOOD	HARDWOOD	VIXED	HARDWOOD	HAROW000	HARDWOOD	CONIFER	HARDWOOD	HARDWOOD	HARDWOOD		MIXED	HARDWOOD	HARDWOOD	VIXED	XIXED XIXED	HARDWOOD	MIXED	MIXED	000 000 000 000 000 000 000 000 000 00		200 200 200 200 200 200 200 200 200 200	UP CON		200 200 200 200 200 200 200 200 200 200	L (J		SC U. CON	MIXED	S S S S S S S S S S S S S S S S S S S	MIXED								
PERCENT	0 4 - 0 0 0	4	4	4 1	4 4 6	4	6-49		0 T	2 62	9	4	4	4 1 2				4 .	20 6 4 1 20 0	4 1 6		0-49	0-49		24 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	2 4 1 2 9 0		0-49	6-40	2 4 1 6 4 4 4 4	4	4	4.	4 4	0 4 4 6 4 6 4 6 4 6 4 6 4 6 4 6 6 6 6 6	1 4	4	4	4	4	4	4	0 0 4 1 0 0	4	
POLYGON	5 2 55	26	57	20,	2.2	92	87	60 C	5	9	_	103	105	121	129	130	132	142	144	152	157	160	166	172	1/3	193	203	207	221	231	234	237	248	259	986	280	294	310	312	317	332	798	375	376	
088	102	104	105	100	108	109	110	::	112	114	115	116	117	119	120	121	122	123	124	126	127	128	129	130	131	133	134	135	136	138	139	140	141	142	144	145	146	147	148	149	150	151	153	154	

MAXIMUM LIKELIHOOD METHOD CLUSTERS

1	ō,	-	0			ν.	E	E.	6	•	10				1 1 1		0	14	o un) I.V	. 6) f:	. 6	9	60	9	6	6	60	6 1	9.0	9 6	9 63	0	0	5 (9 6	9.0	2 6) v:	ı,	ഹ	S	2	S	ın ı	LO L	n u	n un	, vo
	SO4_DEPO	7	2.5-3.6	.5-3.	.5-3.	.5-3.	.5-3.	.5-3.	.5-3.	.5-3.	.6-3	0-3	.0-3.				SO4_DEPO		•	: _	٠,		. ?	5-2.	-5	-2	-2.	-2.	-5	; i	٠ ز	•		-2.	-5			, , c	. 2 - 6 .		.0-2	0-2	.0-2	.0-2.	.0-2.	.0-2.	.0-2	2-0	0-0	1
	RELIEF	FVE	ROLLING	LEVEL	ROLLING	FVE	ROLLING				RELIEF	יי	STEEP	SOL TING	FVF	ROL TNG	SOL TOR	LEVEL	ROLLING	ROLLING	ROLLING	ROLLING	ROLL ING	ROLLING	ROLLING	WOLLING POLLING	ROLLING	ROLLING	STEEP	ROLLING	SIEEF	RULLING TURE	3 - EEF	- FVE	LEVEL	ROLLING	LEVEL	ROLLING	ROLLING	LEVEL	ROLLING		POI TNG	ROLLING						
	SENSI	101								HIGH	RATE	HIGH	MODERATE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		SENSI	2012	511	100	101	1011	HOLL	HOIH	HOIH	HIGH	HIGH	HICH	HICH	HOIL	H .	575	HIGH	нІСн	HIGH	HICH	H .	575	5 7		1511	HIGH	HIGH	HIGH	MODERATE	HSIH	MODERATE	MODERA	MODERATE	MODERATE
	BEDROCK	•	ren	• •	4	4	₹	4	4	4	e	• •	m				BEDROCK	•	• 4	• ◄	• 4	• •	•	• ◀	4	4	4	4	4	4	∢ .	4 -	1 4	4	4	∢ :	◀ ·	4 -	4 •	•	T 🛂	• •	4	4	ю	4	m	ים פי	n r	າຕາ
CLUSTER=1	TEXTURE	Cives	ON V	SAND	GNAN	SAND		-CLUSTER=2		TEXTURE	944	ONAN ONAN	ON TO	ONE C		ON V	SAND	SAND	SAND	SAND	ONYS	SAND	SAND	SAND	SAND	ONAN	SAND	SAND	SAND	SAND	SANC	O SAND	ONAN	ON VS	ONAN	SAND	SAND	SAND	SAND	SAND	OVY S		SAND							
CL	ОЕРТН	a u	. a.	DEEP	SHALLOW	O L L	SHALLOW		1)	,	DEPTH		21440 2440	מיינים כ	9 6	M - 14 - 1	SHALLOW	DEFP	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	DEEP	SHALLOW	DEEP	SHALLUW	1111	WOLLAND MALLOW	SHALLOW	0.17.17.00 1.17.17.00 1.17.17.00 1.17.17.00 1.17.17.00 1.17.17.17.00 1.00 1	SHALLOW	DEEP	SHALLOW	SHALLOW	SHALLOW	SHACLUM	MAL J	SHALLOW						
1 1 1 1	VEG	000	MIXED	HARDWOOD		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		VEG		KATATA CAXIA		E U U E NOO	T VED		CONTERR	CEXTM	WIXED	VIXED	MIXED	MIXED	MIXED	MIXED	S IXED	21X12	MIXED	MIXED	MIXED	KIXED	MIXED SIXED	1 X T X	MIXED CHXIII		CHXIN	MIXED	MIXED	LO CON	MIXED	L0 004	NO. 10	JC	LO CON									
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERCENT	•	4 4 4	4	4	4	4	4	4	4	٦	5	4		; ; ; ; ;		PERCENT	•	4 4	•	4 4	1	1 4	1 4	4	4	4	4	4	4	4	4.	4 4	4	4	4	4	4.	4.	4 4	7	4	4	4	4	4	4.	•	1 7	0 - 4 9
1 1 1 1 1 1	POLYGON		0 0) 4	· uc	0	_	m	9	œ	0	a c	694	•			POLYGON	,	210	9 6	97	n 0	9 6	2 L	2 6		8 6	. 60	(2)	-	~	PP (7	4	◂	ഥ	ശ	ທ	ο,	~ r	- α) a	œ	ູເກ	ທ	0	(4)	7) (·, u	256
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OBS	·	n u	, w	S	S	9	9	9	(C	ď	ď	166				088	- 4	0	^ 6	0 6			- ^		. ~	. ~		~	\sim	OD.	മെ	n a	8	8	œ	∞ .	മെ	∞ ≀	כס	nο	nσ	າດາ	O	on.	o	on o	σ,	20 0	202
į															į	!																																		

-----CLUSTER=2---

SO4_DEPO	2.0-2.5 2.0-2.5 2.0-2.5 2.0-2.5 2.0-2.5	000	2.6-3.6 2.5-3.0 2.5-3.0	20	ខេត		n CO R	S		2.5-3.0	ומו	n un	2.5-3.0		5-3.	N I		2.5-3.0	5-3	 6-3-6	ø	.6-3	6.6-3.5 6-3.5	6	6	9	2 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6		3.6-3.5
RELIEF	LEVEL LEVEL LEVEL ROLLING LEVEL	ROLLING ROLLING ROLLING	LEVEL LEVEL LEVEL	LEVEL	LEVEL	ROLLING ROLLING	LEVEL	LEVEL	LEVEL	ROLL ING	STEEP	ROLLING	LEVEL	LEVEL	KULLING LEVEL	ROLLING	ROLLING	STEEP	ROLLING	LEVEL ROI - TNG	ROLLING	LEVEL	NOLLING POLLING	ROLLING	ROLLING	ROLLING	ROLLING	LEVEL	ROLLING
SENSI	HIGH HIGH HIGH MODERATE HIGH	MODERATE MODERATE MODERATE	H16H	HIGH	HIGH	1011	301	10	151 101 11	HIGH	HOLI	1 H H H H H H	1011	H		HIGH	515	55	HIGH	HOH	HIGH	HIGH	50	H	HIGH	HIGH	551	HIGH	HIGH
BEDROCK	ммм мм	തെത	4 4 4	च च	ਚ ਚ	4 4 4	141	14	4 4	4 4	14	4 4	4 4	r ч	4 4	**	4 4	4 '	1 4	4 4	1 4	4	4 •	1 4	4	∢ .	₹ ₹	1 4	4 4
TEXTURE	S S S S S S S S S S S S S S S S S S S	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	SAND	Q Q Q	SAND	SAND	SAND	SAND	SAND	ONYS	SAND	SAND	ON Y S	SAND	SAND	ONAND	SAND	SAND
DEPTH	DEEP DEEP DEEP SHALLOW	DEEP SHALLOW SHALLOW	SHALLOW DEEP	OEEP OEEP	DEEP DEEP	SHALLOW	DEEP	DEEP	DEEP	SHALLOW	DEEP	SHALLOW	OEEP	DEEP	SHALLOW	SHALLOW	DEEP SHALLOW	DEEP	SHALLOW	OEEP Print	0 1 1 1 1 1 1 1	SHALLOW	OEEP	0.00 0.00 0.00 0.00	DEEP	DEEP		SHALLOW	DEEP DEEP
VEG	SC U.CON SC U.CON SC U.CON	SC C. CON LO CO. CON	MIXED	WIXED WIXED	WIXED	HARDWOOD	MIXED	MIXED	MIXED	HARDWOOD	MIXED	HARDWOOD HARDWOOD	MIXED	MIXED	HARDWOOD	HARDWOOD	MIXED HARDWOOD	HARDWOOD	HARDWOOD	MIXED	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD HARDWOOD
PERCENT	00000 	000 111 144 0000		4 4 4	44	44	0 4 - 0 0 4 - 0	6-49 6-49	04-0	4.	00 0 4 4 0 0	0 4 1 0 0	4	0 0 4 1 0 0	0-49	4 4	0 4 - 0 0 0	4	0.4-0		00 6 4 - 6 00 0	4	4	0 6 1 4 0 0	4	4	04-0		4 4
POLYGON	362 323 325 325	323 363 363	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	387 415 419	4 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	425 426	427 428	4 9 9 8 8 8	452	481	492 494	4 95 8 95	500	509 511	516	560 560	561	567	569	572	586	613	614	619	628	628	630	0 4 0 4 0	651 655
																													55

	SO4_DEPO		SO4_DEPO		1.0-1.	1.0-1.	1.0-1.	1.5-2.	1.5-2.	1.5-2.	1.5-2.	1.5-2.	1.5-2.	1.5-2.	2.0-2	2.0-2	2.6-2	1.6-2	2.0-2	2.0-2	2.0-2	2.0-2	2.0-2	2.0-2	2.6-2	2.0-2	2.0-2	2.0-2	2.0-2	2.0-2	10	0-2	.0-2	2.6-2.5	1
	RELIEF	LEVEL ROLLING ROLLING ROLLING STEEP ROLLING ROLLING ROLLING	RELIEF	0.47	ROLLING	ROLLING	ROLLING	STEEP	SEEF		ROL ING	ROLLING	STEEP	STEEP	FV FI	ROLLING	ROLLING	FVELLING	LEVEL	LEVEL	LEVEL	FVEL	LEVEL	ROLLING	LEVEL	- F F F F F F F F F	FVE	LEVEL	LEVEL	ROLLING	רבי פילור פילור	LEVEL	LEVEL	LEVEL	LF*1.
	SENSI		SENSI		511	HIGH	HIGH	HIGH	HIGH		101	HIGH	HICH	HUGH		HIGH	HIGH	HEL	15 I H		MODERATE		MODERATE	нІСН	HICH	5 1	, T	HIGH	MODERATE	# 10 E		551	HIGH	HIGH	E 9 1 E
	BEDROCK	चचचचचचचचच	BEDROCK		4 4	· 4	4	4	4	4 -	₹ ₹	• ◀	4	∢ ·	4 4	, ⊲	4	4 4	1 4	4	m	∢ ∢	rm	es	∢ ·	4 <	4 4	• ▼	က	m·	4 .	4 4	4	∢ ,	r
	TEXTURE	S S S S S S S S S S S S S S S S S S S	CLUSTER=3 TEXTURE	•	SAND	ON AN	SAND	SAND	SAND	SAND	O V	QUE'S	SAND	SAND	OVAN	S S S S S S S S S S S S S S S S S S S	SAND	SAND	ON AND	SAND	SAND	ONAS	CNAN	SAND	SAND	SAND		SAND	SAND	SAND	ONAN	ON W	SAND	SAND	O AND
	DEPTH	SHALLOW DEEP DEEP SHALLOW SHALLOW DEEP SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW	DEPTH		SHALLOW	SHALLO#	SHALLOW	SHALLOW	SHALLOW	OEEP	טה היי	ב ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	SHALLOW	SHALLOW	DEEP	SHALLOW	SHALLOW	SHALLOW	SHALLUW	DEEP	SHALLOW	DEEP	NU THAI	DEEP	DEEP	0 EEP	ה ה ה ה	DEEP	SHALLOW	OFFP	DEEP	טונים היה מי	DEEP	DEEP	DEEP
	VEG	HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD	VEG		CONTRIBE		A THE TOOL	MIXED	MIXED	CONTRER	CONTER	CONTINK	MIXED	MIXED	000 000	KIXED	MIXED	MIXED		NO ON	SC L.CON	NOU 01	אַט - ניס		UP CON		•	NO. 92	_		0		, 0	LO CON	
	PERCENT	6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	PERCENT		-49	D (0.00	-49	-49	•	64-	0.41		64-	.	94	49	Q () Q	6	6	20 0		7	7	7	: :	- 7	- i	i	i		0-49	1
	POLYGON	658 659 668 678 672 682 692	POLYGON		7	27	9 2	. 4 . 6	6.5	109	117	124	133	155	177	რ დ დ ი	961	205	206	213	218	219	222	242	243	246	249	250	255	260	264	269	279	283	284
	CBS	တို့ ထို ထို ထို ထို ထို လူ လူ လူ	088	•	566	267	268	976	271	272	273	274	2/5	277	278	279	281	282	283	284	256	267	288	D 60 00 00 00 00 00 00 00 00 00 00 00 00 0	291	292	293	294 204	900	297	298	299	300	302	303

-----CLUSTER=3----

SO4_DEPO	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ē ē
RELIEF	LEVER	ROLLING
SENSI	HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH	HIGH
BEDROCK	च च च m m m m च च च च च च च च च च च च च	4 4
TEXTURE	SANDER SON ON O	SAND
DEPTH	DEEP DEEP DEEP SHALLOW SHALLOW SHALLOW DEEP DEEP DEEP DEEP SHALLOW SHA	DEEP SHALLOW
VEG	LO CON CON CON CON CON CON CON CON	MIXED HARDWOOD
PERCENT	0 0	0 4-0 94-0
POLYGON	$\begin{array}{c} 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 222\\ 22$	597 600
088	0.000 0.000	355 356

----CLUSTER=3----

04 DE 06 -3.		\$100 PD
RELIEF ROLLING LEVEL ROLLING STEEP LEVEL	STEVEL STEEP STEEP ROLLING ROLLING ROLLING ROLLING ROLLING ROLLING	RELIEF LEVEL ROLLING
SENSI HIGH HIGH HIGH HIGH		SENSI HIGH HIGH HIGH HIGH HIGH HIGH HIGH HI
BEDROCK	44444444	X
-	SAND SAND SAND SAND SAND SAND LOW SAND LOW SAND LOW SAND	SAND SAND SAND SAND SAND SAND SAND SAND
DEPTH SHALLOW DEEP SHALLOW SHALLOW DEEP SHALLOW	DEEP SHALLOW DEEP SHALLOW DEEP SHALLOW SHALLOW SHALLOW	DEPTH DEFP SHALLOW
VEG HARDWOOD MIXED HARD~OOD HARDWOOD HARDWOOD	MIXED HARDWOOD MIXED WIXED WIXED MIXED HARDWOOD HARDWOOD	VEG CONIFER MIXED CONIFER MIXED MIXE
PERCENT	04-1-00 04-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00 05-1-00	
. > 0000000	654 654 663 673 683 685 689	POLYGON 5 6 8 111 113 119 129 222 222 222 234 244 744 744 744 744 744 744 74
	366 366 366 366 367 370 371	0 BS 3 3 4 4 4 6 6 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9

-----CLUSTER=4-----

SO4_DEPO		
RELIEF	SSTEER SS	LEVEL ROLLING ROLLING ROLLING
SENSI	HICH HICH HICH HICH HICH HICH HICH HICH	H1100 H1100
BEDROCK	* च च च च च च च च ल ल ल ल ल ल ल ल ल ल ल	ाचिचच
TEXTURE	SON	S S S S S S S S S S S S S S S S S S S
ОЕРТН	SHALLOW	SHALLOW DEEP DEEP DEEP
VEG	HARRED O OON OON OON OON OON OON OON OON OON	HARDWOOD HARDWOOD HARDWOOD HARDWOOD
PERCENT	20000000000000000000000000000000000000	4444
POLYGON	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 4 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
088	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	വവവാ

----CLUSTER=4---

FOLYGON 513 522	S 44.	VEG HARDWOOD HARDWOOD	DEPTH DEEP SHALLOW	TEXTURE SAND SAND	BEDROCK	SENSI HIGH HIGH	RELIEF ROLLING LEVEL POLITIC	34_DE5-3.
	0000 1111 0000	HARDWOOD HARDWOOD HARDWOOD	DEEP SHALLOW SHALLOW DFFP	S S S S S S S S S S S S S S S S S S S	4 4 4 4	HHIGH HIGH HIGH HIGH HIGH	ROLLING LEVEL LEVEL ROLLING	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	444	HARDWOOD HARDWOOD	O O C C C C C C C C C C C C C C C C C C	SAND	4 4 4	H100H H100H H100H	LEVEL LEVEL LEVEL	6 6 6 6 6 6
	4 4	MIXED	SHALLOW	SAND	ოო	VODERATE MODERATE	LEVEL	. 6-3 . 6-3
	44	HARDWOOD HARDWOOD	DEEP DEEP	SAND	4 4	819 11111	LEVEL	.0-3. .0-3.
	4 4	HARDWOOD HARDWOOD	DEEP	SAND	4 4	HIGH	LEVEL LEVEL	. 9-3.
	4	HARDWOOD	O GEL	SAND	∢ •	HUGH	LEVEL	. 6-3.
	1 4	HARDWOOD	DEEP PERP	OVANO SANO	• •	HICH	LEVEL	9-3
	4	HARDWOOD	DEEP	SAND	₩.	HIGH	LEVEL	.6-3.
	ģ,	HARDWOOD	טר ה ה ה ה	O CAN	4 4	150	ROLL TNG	9.6
	26	HARDWOOD	DEEP P	SAND	• •	HIGH	ROLLING	.6-3
	6	HARDWOOD	O III II	SAND	∢ •	HIGH	ROLLING	6. 6. 6. 6.
	94	HARDWOOD	DEEP	SAND	. 4	HIGH	ROLLING	5-3.
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CLI	-CLUSTER=5	 		1	1
POLYGON	PERCENT	VEG	ОЕРТН	TEXTURE	BEDROCK	SENSI	RELIEF	S04_0EP0
	4	LO CON	SHALLOW	SAND	4	HIGH	ROLLING	.0-2.
	64-69	N 00	SHALLOW	OVE	▼ •	HIGH	ROLLING	2.8-2.5
	4 4		SHALLOW		•	55	ROLLING	0-2
	4		SHALLOW	SAND	•	HIGH	ROLLING	.0-2.
	4		SHALLOW	SAND	4	HIGH	ROLLING	.0-2.
	4.	ر د د د د د د د د د د د د د د د د د د د	SHALLOW	SAND	∢ √	H 10H	ROLLING	. 6-2
21	4.				r v		100 100 100 100 100 100 100 100 100 100	2.5
	4 4		SERP OFFP	7 Y C	1 4	MODERATE	LEVEL	9-2
	4		OEEP.	LOAM	4	MODERATE	LEVEL	.0-2.
	4	SC U.CON	OEEP	LOAM	4	MODERATE	LEVEL	.8-2.
	4		DEEP	LOAM	▼ .	MODERAIE	LEVEL	9.0
	4.		SHALLOW		4 4		ROLLING BOLLING	2-2
	1 1		SHALLOW	ONAN	r 4	1011	LEVEL	5-3
	4		DEEP	SAND	∙ 4	HIGH	ROLLING	5-3
	4		SHALLOW	SAND	4	ндги	LEVEL	. 5-3.
	1	Ο.	DEEP	SAND	∢ (6	ROLLING	. S. J.
	4.		NHALLUX NHA- DW	0 V V	ი 4	MODERA IN	AULI ING	•
	17	, 0	DEEP	ONAN	• ◀	HIGH	ROLLING	'n
	4		DEEP	SAND	◀	ндін	ROLLING	Ś

1			1 1 1			!!!		
, , , , , , , , , , , , , , , , , , , ,	SO4_DEPO	74474444444444444444444444444444444444		S04_DEP0	3.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		SG4_DEPO	
	RELIEF	LEVEL LEVEL LEVEL LEVEL LEVEL ROLLING ROLLING ROLLING ROLLING ROLLING STEEP STEEP	! ! ! ! ! ! !	RELIEF	ROLLING LEVEL REVEL ROLLING ROLLING ROLLING	†	RELIEF	ROCLL ROCLLING SACCELLING SACCELLING SACCELLING CECELLING CECELLING CECELLING CECELLING
	SENSI	######################################	 	SENSI	HIGH WODERATE HIGH LOW LOW LOW		SENSI	A A A A A A A A A A A A A A A A A A A
	BEDROCK	·	 	BEDROCK	882444	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	BEDROCK	বিকৰ্মবৈধ্যক্ষ্যক্ষ্যক্ষ
-CLUSTER=5	TEXTURE		-CLUSIER=6	TEXTURE	S S S S S S S S S S S S S S S S S S S	CLUSTER=7	TEXTURE	
JJ2C	DEPTH	SHALLOW SHALLOW	CLL	DEPTH	DEEP SHALLOW DEEP SHALLOW DEEP	כרו	DEPTH	SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW SHALLOW
	VEG	MENT SEED ON S		VEG	HARDWODD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD		VEG	CONTRER CONTRER CONTRER CONTRER CONTRER CONTRER CON CON CON CON CON CON CON CON CON CON
	PERCENT	00000000000000000000000000000000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PERCENT	0 - 4 - 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		PERCENT	00000000000000000000000000000000000000
	POLYGON	4 4 4 4 4 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	POLYGON	39 42 162 677 679 680		POLYGON	663 1109 1119 1119 1119 1110 1110 1110 111
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	088	566 568 568 571 571 571 571 572 573 573 573 573 573 573 573 573 573 573		088	522 522 522 522 523 62 62 63 64	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	088	® 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
1			1					

-----CLUSTER=7----

SO4_DEPO	.6-2	2.8-2.5	,	2-2	.0-2.	9-2	5-6-		, 4	9 (5-3	5-3	5-3	5-3.	5-3.	5-3	5-3	5-3	5-3	2.5	, , ,		5 6		9 19	3-3.	0-3.	6-3.		3.5-4.0		SO4_DEPO	•		. 0-1.	. 1-6.	.9-1	9-1-	1.0-1.5	. 4-0.	٠, ١	;;	1.5-2.0
RELIEF	LEVEL	רביעבר - ביעבר	1 1 1	LEVEL	LEVEL	ROLLING	DOI - TNC	ROLLING	LEVEL	LEVEL	LEVEL	LEVEL	ROLLING	ROLLING	ROLLING	ROLLING	SIEEP		L T V F L	ROLLING	AULLING POLL TRIO	POLL INC.	ָרָנְאָנְיּ פּיאָנִייִ פּיאָנִייִ	ROI - TNG	SUL TON	ROLLING	ROLLING	ROLLING	רבעבר הייני	CTETE	STEEP		RELIEF	SAT - 108	LEVEL	ROLLING	LEVEL	ROLL ING	ר די לה ה עה ר	LEVEL	LEVEL	ROLLING POL. TNO	ROLLING ROLLING	ROLLING
SENSI	HIGH	135	HOLH	HIGH	HICH	MODERATE		E	MODERATE	MODERATE	HICH	HIGH	HIGH	HICH	HIGH	H514	1	5 5 5	בים בים בים			E I	1	H	HIGH	HIGH	HICH	HICH	H 10		HIGH		SENSI	нТСн	HIGH	- 1	- 1	MODEXALE	-	HIGH	HOLL	MODERA LE	HIGH	HIGH
BEDROCK	4 4	r 4	7	4	4 (m 4	r 4	• ◀	4	4	4	₹	4	₹ .	∢ ⋅	4 .	• •	• •	• •	7 4	٠ ٦	· ¬	•	•	₹	4	4	∢ ·	4 4	r 4	₩		BEDROCK	4	4	4 (י ניי	7 (*	m	es :	∢ ∩	יז מי) M	· m
TEXTURE	SAND	SANO	SAND	SAND	SAND		SANO	SAND	LOAW	LOAM	SAND	SAND	SAND	SAND			O ON A C	ON A C	ON A V	ON TO	ON VS	SAND	GNAS	SAND	SAND	SAND	SAND	O V	200	ON A S	SAND	CLUSTER=8	TEXTURE	SAND	SAND	SAND		ONAS	SAND	SAND	O CAA	SANO	SAND	SAND
DEPTH	SHALLOW	SHALLOW	SHALLOW	SHALLOW	SHALLOW	DEFP	SHALLOW	SHALLOW	DEEP	OFEP	d.: 130	DEEP	SHALLOW	SHALLUN SHALLUN		מוויים מוויים	NHV.	ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה ה	NHV I	SHALLOW	SHALLOW	SHALLOW	SHALLOW	DEEP	DEEP	DEEP	6. II	711	SHALLOW SHALLOW	SHALLOW	SHALLOW	7)C	DEPTH	SHALLOW	E E	֓֞֝֝֝֓֞֜֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֓֓֡֓֡֓֡֓֡	 	SHALLOW	L LIJ	۵. انا انا انا انا انا انا	- L I	SHALLOW	FFP	DEEP
VEG	800 800 800 800 800 800 800 800 800 800					UP CON	MIXED	MIXED	LO CON	L0 C0N	S S S	NO.	MIXED TXTO	MIXED			LIXED	CONTERP	LIXED	MIXED	MIXED	MIXED	MIXED	MIXED	MIXED	MIXED	MIXED	*IXED	Z X E	MIXED	HARDWOOD		VEG	HARDWOOD	KIXED SI		MIXED	CONTER	CONIFER	CONTER	MIXED WIXED	WIXED	MIXED	MIXED
PERCENT	0 0 -4 0	4	0-49	1.	7 7	17	4	4	4	6-49	4	4.	4 1	1	1 7	1 4	4	4	4	4	4	0-49	4	4	7	4	4.	1	4	0-	50-74		PERCENT	3-49	0-49	0.00	1 1 1 1	3-49	3-49	6.4.6.00 0.04.1	9-49	9-49	9-49	3-49
POLYGON	292 299																															1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	POLYGON		00	. T	17	21	23	00 5 m 4	. 4 0	20	51	99
088	548 548																															! ! !	088	æ	a	0 00	œ	œ	ω .	590	ര	O	00 1	ന

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	SO4_DEPO	2	1.5-2.0	'n	5-2	2-2	2.6	2.6.		2-2	ų.	5-2.	200	2-2	5-2	5-2	5-2	0-5	2-5	3-6	0-2	0-2	9-2	2-0	0-2	2-2	2-0	5 6	9-2	5-3	0 10	10.	1 1	, 1		S04 DE20) }	2.0-2.	2.6-2.5	2.0-2.	2.0	2.0-2.	2.6-2.	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RELIEF	ROLLING	ROLLING	ROLLING	ROLLING	ROLLING	ROLLING	RULLING POL TRIC	100	ROLLING	STEEP	LEVEL	STEEP	STEEP	STEPP	STEEP	ROLLING	ROLLING	LEVEL	רביעבי העבי	LEVEL	LEVEL	LEVEL	רהעה העהו	LEVEL	LEVEL	LEVEL	POL TING	LEVEL	ROLLING	רבע העבר העבר	LEVEL	ROLLING	חררזי	1 1 1 1	## 1 H	1	ROLLING	LEVEL	LEVEL	ROLLING	LEVEL	LEVEL	
	SENSI	MODERATE	VODERATE	MODERATE	нТСН	MODERATE	HICH	HIGH	HIGH	1 2 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	MODERATE	HIGH	MODERATE	MODERATE	HIGH Androy	CODERATE	HOH	HIGH	MODERATE	VODERATE	N	*O.	LOW	. C	* * * * * * * * * *	MODERATE	LOW	WCDERATE	HIGH	HIGH	HIGH	5	HIGH	E 57 H		FONDS	T CNJ C	HIGH	101	HIGH	HIGH	HIGH	HICH	ļ •
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BEDROCK	~	3 (1)	m	4	6	4	∢ :	∢ (v) v	• ") 4	· m	es i	00	m (r	7 🔻	m	m	m I	יז ניי	n m	4	∢ .	4 4	m	М	m i	4) (F) (T)	en c	7) (T	n m	m	1		おいっといいと	4	4 4	1 4	4 .	4 4	4 4	
	w	9			ONAS	SAND	SANO	SAND	SAND	SAND	SANG		SAND	SAND	SAND	CNAS) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	CNAS	SAND	SAND	SAND	SANC A	,	CLAY	CLAY CLAY	NYO T	CLAY	LOAW	O VANO	ON AN	SAND	ONAN	SAND	SAND	010010	1 (TEXTURE	ONAS	ONAN	ON A S		ORGANICS	SAND	Q IV
	DEPTH		SHALLOW	SHALLOR		SHALLOW	DEEP	DEEP	DEEP	SHALLOW	OFFP	SHALLOW	DEET NHALL DW	SHALLOW	DEEP	SHALLOW	SHALLOW	SHALLOR	SHALLOW	SHALLOW	SHALLOW	0 EE P	ב מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ מ	DEEP	DEEP	טר היות מיות	7 17 17 17 17 17 17 17 17 17 17 17 17 17	DEEP	SHALLOW	ט ה קידור קידור	DEEP	SHALLOW	00 00 00 00 00 00 00 00 00 00 00 00 00	DEEP	7	1	DEPTH	WOLIAHA	DEEP	SHALLOW	SHALLOW	>	DEEP	SHALLUM
	VEG	! !	CEXIM	MIXED	MIXED	HAROWOUD		MAROWOOD MAROWOOD	HARDWOOD	MIXED	HARDWOOD	HARDWOOD	HARDWOOD	HARDWOOD	CONTRER	HARDWOOD	HARDWOOD	CEXIN	MIXED	ZIXED	WIXED	VIXED			UP CON	NO 6		. O	HARDWOOD	MIXED	MIXED	HARDWOOD	MIXED HARDWOOD	HARDWOOD		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VEG		ز ز	: نـ	ור כ		SC U.CON	>
		1																						00 0 4 1 0 0 0									04-69				PERCENT	•	4 4	4	4 4	4.	0 0 1 0 0	7
	200	PUL 160%	61	19	83	84	96	95	116	131	13.6	136	140	153	159	164	169	176	186	187	20.0	202	270	285	311	314	328	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	369	372	377	379	40	637			POLYGON	1	$\sigma \sim$	N	ഥധ	യ	267 273	-
	1 0	SB0	965	265	863	599	600	601	602	500	0 4 6 6 7	999	607	608	609	616	612	613	614	615	616	618	619	620	621	623	624	625	626	628	629	929	632	633 634			085	j	~ ~	~ ~	m	ο 4	641	· 4

----CLUSTER=9----

S04_DEPO	00000000000000000000000000000000000000	504 DEPO CONTRACTOR OF THE POLICY OF THE POL
RELIEF	STEEP LEVEL LEVEL LEVEL LEVEL LEVEL LEVEL ROLLING ROLL	RELIEF LEVEL ROLLING ROLLING ROLLING ROLLING ROLLING ROLLING ROLLING ROLLING ROLLING STEEP LEVEL LEVEL LEVEL LEVEL ROLLING STEEP ROLLING STEEP ROLLING STEEP ROLLING STEEP
SENSI	HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIGH	SENSI HIGH HIGH MODERATE HIGH MODERATE HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG
BEDROCK	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BE
TEXTURE	SSAND SSAND	SAND SAND SAND SAND SAND SAND SAND SAND
ОЕРТН	SHALLOW SHALLO	DEEP DEEP DEEP DEEP DEEP DEEP DEEP DEEP
VEG	NOON NOON NOON NOON NOON NOON NOON NOO	VEG MIXED MIXED MIXED MIXED MIXED MIXED MIXED HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD HARDWOOD
PERCENT	00000000000000000000000000000000000000	######################################
POLYGON	2278 3301 3313 3313 3313 3313 3313 348 348 348 360 44 44 603 603 603 603 603 603 603 603	POLYGON 15 15 15 15 15 15 15 15 13 16 16 16 16 16 16 16
088	\$\text{0}\$ \tag{0}\$ \	085 671 672 673 674 676 678 678 688 688 688 688 688 688 688

MAXIMUM LIKELIHOOD METHOD CLUSTERS

	SO4_DEPO	2.0-2.5 2.0-2.5 2.0-2.5
	RELIEF	LEVEL LEVEL LEVEL
	SENSI	HIGH HIGH MODERATE
	BEDROCK	ოოო
TER=10	TEXTURE	SAND SAND SAND
נרחפ	ОЕРТН	DEEP DEEP SHALLOW
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	VEG	HARDWOOD HARDWOOD HARDWOOD
1 1 1	PERCENT	9 4 - 0 9 4 - 0
	POLYGON	192 378 373
	088	692 693 694

APPENDIX B PROBAR REFLECTANCE DATA

- Table B.1. Corrected PROBAR reflectances above the water surface and water chemistry data.
- Table B.2. PROBAR subsurface predicted reflectances.

able B.1.		S AND LIMNOLOGICAL DATA
—	Table B.1.	REFLECTANCES

The color of the	NAME	PROFILE 61	PH SD	TTLCHL_A	DOC SO4	4 AL	TR443 TR470
45 5.14 13.5 6.3 6.3 6.4 10.56 180 6.1050224 45 4.6 5.6 6.14 13.5 6.3 11.4 3.80 6.1052224 45 4.6 6.16 6.0 6.2 6.3 11.4 3.80 6.1052224 45 5.5 11.6 6.1.2 6.3 1.3 1.4 3.80 6.105224 4 5.5 5.1 5.1 6.0 6.1 1.3 1.0 5.0 11.0 6.0 12.2 5 5.5 1.1 6.0 6.4 1.3 1.0 6.4 1.3 1.0 5.0 11.0 6.0 12.2 5 5.5 1.1 6.0 6.4 1.3 1.0 6.0 1.3 1.0 5.0 11.0 6.0 12.2 5 5.5 1.2 5.1 1.3 5.1 1.4 2.2 1.0 1.3 5.1 1.0 6.0 1.3 5 5.5 5.5 5.5 5.5 5.5 5.5 1.3 5.0 1.3 1.0 5.0 1.0 6.0 1.3 5 5.5 6.5 5.5 6.5 7.4 1.3 2.8 1.3 1.0 5.0 1.3 5 5.5 6.5 5.5 6.5 7.4 1.3 2.8 1.3 1.0 5.0 1.3 5 5.5 6.5 5.5 6.5 7.4 1.3 2.8 1.3 1.0 5.0 1.3 5 5.5 6.5 5.5 6.5 7.4 1.3 2.8 1.3 1.0 5.0 1.3 5 5.5 6.5 5.5 7.4 1.3 2.8 1.3 1.0 5.0 1.3 5 5.5 6.5 7.4 1.3 2.4 1.3 2.4 1.4 1.3 5.0 1.3 5 5.5 6.5 7.4 1.3 2.2 1.4 1.3 5.0 1.3 5.0 1.3 5.0 1.3 5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.	SUNNYWAT	5 6	89.	. 6	.4 10		122220
45	JERRY	8	.14 13.	6.3	.4 10	•	.125050
7.2 7.38 6.8 1.2 2.5 1.9 1.0 5.0 1.0 6	×:	5.	.06 15	.	.3		. 108530 0
7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7	×	2.5	.80 16	2.0	ص. د	71	.102820
3.5 4.1.5 1.5 </td <td>MINELL VO</td> <td>7 6</td> <td>D</td> <td>7.7</td> <td>0.0</td> <td>•</td> <td>.025346</td>	MINELL VO	7 6	D	7.7	0.0	•	.025346
## 5 5 5 6 7 7 4 1 1 3 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	2 ×	n w	44 62.	. 4	-		04740
81 5 5 7 7 8 1 1 3 2 8 1 1 6 6 1 1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	×	78	51		•		057278 A
24 6 6.8 1.1 2.2 10.00 10.00 10.00 0.01544 5.5 5 6.6 7.0 1.4 2.2 10.00 10.00 10.00 0.041320 5.5 5 6.6 5 6.8 1.5 1.0 1.7 9.85 84 0.044320 5.5 79 4.2 1.3 1.0 1.7 9.85 84 0.044320 5.6 5 79 4.2 1.3 1.0 1.7 9.85 84 0.044320 5.8 6 5 1.8 1.1 0.4 0.9 1.5 0.044320 5.8 6 5 1.8 1.1 0.4 0.9 1.5 0.044320 5.8 7.1 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044320 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.4 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044440 5.8 8 9 1.0 1.2 0.044400 5.8 8 9 1.0 1.2 0.0444000 5.8 9 1.0 1.2 0.0444000 5.8 9 1.0 1.2 0.044	×	81	.52 7.	1.3			038840 0
27 6.67 7.0 1.4 2.2 10.00 16 0.005649 23 5.5 6 8 8 1.5 1.6 3.8 9 13 51 0.000014 24 5.7 6 8 4 1.5 3.4 9 13 51 0.0046014 48 6 6 7 7 6 1 1.8 3.4 9 13.5 55 0.0046103 48 6 7 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	PILGRIM	30	.46 6.	1.1	~		.031540 0
59 5 65 5 8 1.5 9 13 6 0.0467326 </td <td>MAGGIE</td> <td>27</td> <td>.67 7.</td> <td>1.4</td> <td>.2</td> <td></td> <td>. 035640</td>	MAGGIE	27	.67 7.	1.4	.2		. 035640
33 5 5 53 8 3 1.0 1.0 1.7 9 86 84 0.447320 48 6 7.0 8 8 4 1.3 2.4 10 4 8 36 60 0.4461320 48 6 5.7 0 8 8 4 1.3 2.4 10 4 3 6 5 6 0.444300 48 6 5.9 1 1 3 5 0.5 1 1 8 3.2 5 9 18 8 4 6 0.038550 48 7 1 13 5 0.5 1 1 3 6 3.6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	×	59	.65 5.	1.5	80.		.040014
24 5.70 8.4 1.3 2.4 19.45 55 60.46240 10 5.69 6.9 1.8 3.4 9.35 55 60.44003 10 5.69 6.9 1.8 3.6 8.71 120 6.038526 13 7.0 1.6 3.6 8.71 120 6.013826 45 5.02 4.3 1.6 3.6 8.71 120 6.013826 45 5.02 4.3 1.6 3.6 8.71 120 6.013826 16 4.99 6.5 1.4 1.8 1.1 120 6.014400 16 4.99 6.5 1.4 1.8 1.1 1.0	BLUESUCK	33	. 53 8.	1.0	.7		.047320
67 5.79 4.2 2.5 3.4 9.35 55 6 0.040103 48 6.69 2.0 1.4 3.6 9.18 46 0.038656 48 6.69 1.4 3.6 9.18 46 0.038656 48 6.6 1.4 3.6 1.6 3.6 8.71 120 0.021762 47 6.02 4.3 1.6 3.6 8.71 120 0.021762 48 7.6 1.3 1.6 1.2 0.021762 49 6.5 1.4 1.8 11.70 110 0.021762 49 6.5 1.4 1.8 11.70 110 0.103362 40 6.5 1.4 1.8 11.70 11.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	SOLACE	24	.70 8.	•	٠,		.046240
10 5 69 6 9 1 8 3 2 9 8 8 46 0 033850 48 45 5 0 033850 48 45 5 0 0 033850 48 45 5 0 0 033850 48 45 5 0 0 0 033850 48 45 5 0 0 0 033850 48 45 5 0 0 0 0 033850 48 45 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	×	29	. 79	•	₹.		.040103
48 5 82 2 2 0 0.5 4 4 0 0.5 5 2 0 0.33820	×	10	9 69.	•	.2		. 038950
13 7 61 13.5 0.5 1.8 29.20 13 0.044400	MUDDING	8	.82 2		9.		033820
45 5.02 4.3 1.6 3.6 8.71 120 0.021728 1.6 4.9 6.5 1.4 1.8 11.70 110 0.021728 1.6 6.5 1.4 1.8 11.70 110 0.021728 1.8 1.6 1.8 11.70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.8 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 110 0.021728 1.1 70 0.021728	×	13	.61 13		29		044400
16 4.7 5.02 4.3 1.6 3.6 8.71 120 0.057060	×	4.5	4		œ		921729
16 4.99 6.5 1.4 1.8 11.70 110 0.089740 50 4.99 6.5 1.4 1.8 11.70 110 0.089740 19 6.5 1.4 1.8 11.70 110 0.089740 19 6.5 1.4 1.8 11.70 110 0.089740 19 6.5 1.4 1.8 11.70 110 0.088740 19 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.088740 18 6.5 1.4 1.8 11.70 110 0.0887400 18 6.5 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	×	47	200	. ~			957989
TR580 TR610 TR732 TR732 TR732 TR610 TR6140 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0140200 0.0160000 0.01600000 0.0160000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.01600000 0.016000000 0.01600000 0.016000000 0.016000000 0.016000000 0.016000000 0.016000000 0.016000000 0.0160000000 0.0160000000 0.0160000000000	STOUFFER	. 9	6	•			980749
TR580 TR610 TR640 TR640 TR670 TR670 TR640 TR670 TR	STOUPFER	20.00	9		• -		193538
TRSB0 TR	; ;	2 -	,	. 6	•		910010
TR556 TR580 TR610 TR610 TR640 TR640 TR670 TR670 TR7000	FREDERIC	38	- 140	9.9	•		.114430 0
041970 0.032900 0.0208660 0.0140200 0.0140200 0.0156000 0.0140200 0.0169100 0.0078800 0.05710 0.026340 0.0156000 0.0169100 0.0169100 0.0078800 0.05711 0.027320 0.0168500 0.0169500 0.0169100 0.0065100 0.05731 0.027320 0.0168500 0.0169500 0.0065100 0.0065100 0.057320 0.027320 0.0148600 0.0149000 0.0065100 0.0065100 0.057330 0.025602 0.020600 0.0149000 0.0128000 0.0107800 0.05750 0.023600 0.0149000 0.0143500 0.0107800 0.0118600 0.05600 0.0265100 0.0143500 0.0143500 0.0118600 0.0118600 0.03470 0.0256100 0.0119600 0.0113500 0.0113500 0.0118600 0.03860 0.027600 0.0118600 0.0113500 0.0118600 0.0118600 0.03860 0.027600 0.0118600 0.0118600 0.0118600 0.0118600	TR55@	TRS80	TR610	TR640	TR67.0	TR700	TR732
0.05/10 to 0.05/10						0.0080100	6.0048700
0.05/518 0.015/528 0.015/528 0.015/528 0.016/528 <th< td=""><td>•</td><td>•</td><td></td><td></td><td>•</td><td>GORR/GG. G</td><td>9</td></th<>	•	•			•	GORR/GG. G	9
0.027210 0.0213900 0.0143900 0.00065300 0.00065300 0.0034800 0.028300 0.0149000 0.0128000 0.0149000 0.0128000 0.0107800 0.028300 0.0209600 0.0149000 0.0128000 0.0167800 0.0167800 0.028600 0.025310 0.0300700 0.0179000 0.0128000 0.01104300 0.038600 0.045330 0.0323400 0.0179000 0.0127400 0.01104300 0.038600 0.045330 0.0253400 0.0179000 0.0127400 0.01104300 0.038600 0.0257400 0.0179000 0.0127400 0.0104300 0.038610 0.0257400 0.0179000 0.0127400 0.01047900 0.038610 0.0257400 0.0177400 0.0047900 0.0112300 0.043610 0.0257400 0.0178000 0.0178000 0.0178000 0.0178000 0.043610 0.025760 0.0257600 0.0257160 0.0257160 0.0257160 0.0178000 0.043600 0.025160 0.025160 0.025160	٠	•	0.0254400	0.0169600	٠	0.0109100	0
20.20.50 0.023.90 0.020.80 0.013.80 0.013.80 20.80.50 0.020.80 0.010.80 0.012.80 0.010.80 20.80.80 0.020.80 0.012.80 0.010.80 20.80.80 0.020.80 0.011.80 0.011.80 20.80.80 0.020.80 0.011.80 0.011.80 20.80.80 0.020.80 0.011.80 0.017.40 0.009.40 20.80.80 0.020.80 0.011.80 0.017.40 0.009.40 20.80.81 0.021.80 0.011.80 0.017.40 0.009.40 20.80.81 0.021.80 0.011.80 0.016.74 0.001.80 20.80.81 0.021.80 0.011.80 0.016.74 0.001.80 20.80.81 0.021.80 0.011.80 0.016.74 0.001.80 20.80.81 0.021.80 0.011.80 0.016.74 0.001.80 20.80.81 0.021.80 0.011.80 0.016.74 0.001.80 20.80.81 0.021.80 0.011.80 0.016.80 0.011.80 20.80.82	•	928/39.0	995R419.9	0.000000	•	0.0057200	9
0.057550 0.0205000 0.01170000 0.0118000 0.01107800 0.050580 0.045550 0.0388400 0.0187500 0.0187500 0.011078000 0.050580 0.045330 0.0382100 0.0170000 0.0143500 0.0118600 0.039470 0.045340 0.0282100 0.0179000 0.0137400 0.0118600 0.039470 0.028670 0.0179000 0.0174000 0.0118600 0.0118600 0.039470 0.0287200 0.0179000 0.0174000 0.0118600 0.0118600 0.039470 0.0287200 0.0179000 0.0174000 0.0118600 0.0118600 0.03880 0.028780 0.018500 0.018500 0.0187800 0.0187800 0.03891 0.038780 0.033265 0.0289932 0.0257150 0.0187800 0.043729 0.0332167 0.028000 0.018600 0.0118700 0.0205955 0.043810 0.036000 0.0140000 0.0140000 0.0144020 0.0205956 0.037810 0.0325100 0.0142000		0.033900	0.0148600	0.0065200	0.0060500	0.0034800	0.0024600
0.055 83.0 0.03584400 0.0170000 0.0135000 0.0150200 0.056080 0.045330 0.0300700 0.0119000 0.0132000 0.01184300 0.05600 0.045331 0.0253400 0.0118000 0.0127400 0.0118600 0.030470 0.0253400 0.0179000 0.0127400 0.0118600 0.033680 0.0257400 0.0179000 0.0127400 0.0118600 0.033810 0.033760 0.0118900 0.0127400 0.0047900 0.033810 0.033760 0.0118900 0.0127400 0.0107200 0.043110 0.023760 0.0118900 0.0174900 0.0117300 0.043110 0.023760 0.0289932 0.0257150 0.0213783 0.043110 0.023760 0.028600 0.0118700 0.0213783 0.043120 0.023760 0.0284200 0.0181400 0.018400 0.043120 0.034000 0.0142100 0.028600 0.033620 0.04424625 0.026000 0.0431300 0.034000 0.014400		0.026020	•	0.0149000		0.0107800	
. 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.067830	0.057550		0.0262700	0.0187500	0.0150200	e.
0.0456 0.0456 0.0456 0.01186		0.045330	•	0.0170000	0.0132000	0.0104300	9
0.034680	•		•	000000000000000000000000000000000000000	0.0143500	6.0118600	9 1
0.0286 0.0286 0.0286 0.0047900 0.004700 0.00470	•			0.01/9666	0.012/400	0.0034000	9
. 041813 0 0.0387410 0.0287200 0.0185600 0.0162400 0.0102200 0.0102200 0.0162140 0.0357410 0.0335782 0.0289932 0.0257150 0.0213783 0.051940 0.048120 0.0335600 0.0289932 0.0257150 0.0213783 0.051940 0.048120 0.0335600 0.0186400 0.0171400 0.0118700 0.0213783 0.048120 0.033520 0.033520 0.0181400 0.0181400 0.0118700 0.0205955 0.0259520 0.033520 0.048520 0.033620 0.0181400 0.0181400 0.0154000 0.0154000 0.018390 0.045500 0.0181400 0.0154000 0.0154000 0.0153810 0.04550 0.0193300 0.0142100 0.0099600 0.0153810 0.042550 0.0142100 0.0099600 0.033810 0.045550 0.0142100 0.0153500 0.0141900 0.0157350 0.045520 0.045500 0.0455400 0.0554200 0.0557800 0.057850		0/05/0	0.01/4200	0.0110900	9959/99.9	0.0047900	-
041012 0.0332665 0.0289932 0.0257150 0.0213783 0.051940 0.048120 0.0335600 0.0200000 0.0171400 0.0112300 0.04379 0.043180 0.0352167 0.0362167 0.0159700 0.0118700 0.033620 0.0457170 0.022167 0.0300574 0.0244625 0.0205955 0.033620 0.04580 0.022167 0.0300574 0.0244625 0.0205955 0.033620 0.04580 0.0244000 0.0134000 0.0134400 0.0205965 0.027960 0.0133300 0.0178800 0.0142100 0.00996600 0.023810 0.027960 0.0133300 0.0178800 0.0142100 0.00996600 0.023810 0.025500 0.0142100 0.00996600 0.0142100 0.00996600 0.027800 0.045500 0.0153300 0.0153900 0.0143900 0.0143900 0.027800 0.0453500 0.0153900 0.0153900 0.0653900 0.0141900 0.027800 0.027800 0.0653900 0.0657800 0	0.638830	•		0.0185600	0.0162400	0.0102200	_
0.0431940 0.043122 0.0335600 0.0200000 0.0171400 0.0112300 0.043180 0.043180 0.043180 0.043180 0.0113300 0.0113300 0.0133570 0.043729 0.0281567 0.0386574 0.056358 0.043729 0.0361567 0.0364625 0.0255955 0.0363820 0.0453700 0.0234700 0.0234700 0.0234700 0.0234700 0.0258000 0.01594000 0.01594000 0.0234700 0.0358000 0.0159600 0.0159600 0.0159600 0.0159600 0.0159600 0.0159600 0.0159600 0.0141900 0.057420 0.023550 0.0215900 0.0178800 0.0159500 0.0141900 0.057800 0.0498500 0.0448500 0.0621800 0.0559600 0.048500 0.048500 0.0657800 0.0559600 0.048500 0.0657800 0.05	0.041012	•	•	0.0289932	0.0257150	0.0213783	_
0.043570 0.043180 0.0281500 0.018700 0.0118700 0.050358 0.043729 0.0362167 0.0300574 0.0244625 0.0205955 0.033620 0.0420580 0.0261900 0.0181400 0.0154000 0.0154000 0.038390 0.0420800 0.0134700 0.0134700 0.0154000 0.0154000 0.032310 0.027960 0.0193300 0.017800 0.0142100 0.0090600 0.023810 0.027960 0.0193300 0.017800 0.0159500 0.0141900 0.057420 0.048540 0.043500 0.0159500 0.0335300 0.0335300 0.078500 0.0745500 0.0627500 0.0467200 0.0467200 0.0467200 0.078500 0.0773200 0.0627800 0.0627800 0.0627800 0.0627800 0.0866100 0.0773200 0.0773200 0.0627800 0.0627800	0.051940	٠	ö	0.0200000	0.0171400	0.0112300	_
	0.043570		0.0281500	0.0186400	0.0159700	0.0118700	-
	0.050358		0.0362167	0.0300574	0.0244625	0.0205955	
038390 0.040580 0.0340000 0.0259100 0.0234700 0.0200600 032740 0.023550 0.0193300 0.0140200 0.0142100 0.0090600 0.023810 0.023550 0.0218500 0.0178800 0.0155500 0.0141900 0.07420 0.042540 0.0359600 0.0335300 0.078500 0.0621300 0.0543900 0.0457200 120060 0.0101820 0.0868100 0.0773200 0.0654200 0.0627800 0.06640 0.0395000 0.0255300 0.0657800 0.0627800	0.033620		0.0261900	0.0204200	0.0181400	0.0154000	
032740 0.027960 0.0193300 0.0140200 0.0142100 0.0099660 0278810 0.023560 0.0215900 0.0178800 0.0159500 0.0141900 0.057420 0.048540 0.0438500 0.0335300 0.0335300 0.0335300 0.078500 0.074550 0.0653300 0.0543900 0.054300 0.0657800 120060 0.101820 0.0868100 0.0773200 0.0654200 0.0627800 0.06640 0.0335300 0.0525200 0.0627800 0.0627800	0.038390		0.0340000	0.0259100		0.0200600	0.0184300
.023810 0.023250 0.0215900 0.0178800 0.0159500 0.0141900 0.057420 0.048540 0.0438500 0.0425400 0.0459500 0.0335300 0.0378500 0.0425400 0.0425400 0.0445900 0.0445850 0.04457200 0.0445850 0.0467200 0.0445850 0.0467200 0.04488200 0.0621300 0.0773200 0.0448200 0.0627800 0.0627800 0.0677800	0.032740		0.0193300	0.0140200		0090600	00000000
.057420 0.048540 0.043500 0.0425400 0.0359600 0.0335300 0.0378500 0.03353600 0.03353600 0.03353600 0.03353600 0.03353600 0.03353600 0.03353600 0.03353600 0.03353600 0.03535300 0.0543900 0.0543900 0.0498200 0.0467200 0.0467200 0.05435300 0.0543600 0.0627800 0.0627800 0.055300 0.055300 0.0525200 0.05201600 0.035510 0.03353600 0.0355300 0.0355300 0.0355300 0.02261600 0.0355300	0.023810			0.0178800		0 0141900	0.0000000
.078500 0.074550 0.0621300 0.0543900 0.0498200 0.0467200 .120060 0.10:820 0.0868100 0.0773200 0.0694200 0.0627800 0.0627800 0.0627800 0.0773200 0.0525200 0.0627800 0.0627800 0.0773200 0.0525200 0.0627800 0.0773200 0.0772	0.057420			0.0425400		00235300	000000000000000000000000000000000000000
.120060 0.101820 0.0888100 0.0773200 0.06594200 0.062780			•	0 0000000000000000000000000000000000000	•	9,000,000	99000000
.040640 0.033510 0.0320000 0.0255300 0.0225200 0.0201600 0.	0.120060	~		0.0243300	9694299	0.0407200	•
CONTROL OF SECURITIES		ć		900000000000000000000000000000000000000	,	00012000	
	٠	3 6	•		770.	0001020.0	•

-
_
-
•
\sim
0
- 1
=
•
U
-
o
0
•
=
o
Z
₹
-
Н
_
۵
7
-
•
S
ш
u
=
-
₹
₹
X
₹ Y
ECTA
ECTA
Ш
FLE
FLE
EFLE
FLE
EFLE
REFLE
R REFLE
AR REFLE
AR REFLE
BAR REFLE
OBAR REFLE
BAR REFLE
ROBAR REFLE
OBAR REFLE
ROBAR REFLE
ROBAR REFLE
ROBAR REFLE
ROBAR REFLE
ROBAR REFLE
ROBAR REFLE
CTED PROBAR REFLE
TED PROBAR REFLE
CTED PROBAR REFLE
RECTED PROBAR REFLE
BRECTED PROBAR REFLE
OBBECTED PROBAR REFLE
BRECTED PROBAR REFLE

THE TOTALE TOTAL	2	į	מסטבדו ה	3 3		TTI CHI A	000	504	٩٢	TR443	TR470
41 4 75 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Z	AME	אטר זרב	_	S		3	1	ļ		
35 4.61 17.4 6.20 0.8 13.40 256 0.8 0.187600 0.8 13.50 256 0.19250 0.9 13.50 256 0.9 1		REDERIC	7	4.75	Ś	0		12.90	200	0.095150	0.100440
32 4.63 19.0 0.30 0.8 13.50 250 0.15700 0.0 12 5.69 3.4 3.10 0.2 1.2 0.0 11 0.0 11900 0.0 12 5.69 3.4 3.10 0.2 1.1 0.0 110 0.0 12920 0.0 12 5.69 3.4 3.10 0.2 1.1 0.0 110 0.0 12920 0.0 12 5.69 3.4 3.10 0.2 1.1 0.0 110 0.0 12920 0.0 12 5.69 1.1 0.0 12 5.69 1.1 0.0 12920 0.0 129	\sim	DUGHERT	35	4.61	17	0		13.40	260	0.050320	0.50003.0
18	\sim	DUGHERT	32	4.63	19	m		13.50	900	007601.0	0.000.00
21 5.69 3.4 2.10 5.7 11.20 4.9 0.008320 0 0.	\sim	OUGHERT	38	4.63	19	n		13.50	957	000100	0.101.0
22			21	5.69	e	7		11.00	110	001220.0	0.02220.0
18 5.95 7.7 1.30 2.7 1.120 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2			22	5.97	4	e,		•	4 (000000000000000000000000000000000000000	
15			œ.	5.95	7.	3	4		27	0.034720	0.045310
15. 4.54 18.0 0.70 2.4 14.0.20 11 0.023480 0.0.2348 2.4 4.4 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4		CUSTATA	2.5	5.12	12.	e		Ď	170	0.069540	
15. 4.54 18 0 0.30 0.30 0.31 15.60 18.0 0.005340 0.005540 0.0051450 0.005540 0.0051450 0.005540 0.0055		COTATA	3 4	•	œ	^		Ñ	11	0.023480	0.025070
28 4.96 4.4 4.5 6.36 6.31 5.0 115.0 180 0.055540 0.021 2.2 4.44 6.5 10.0 0.031 4.0 180		AURA	D (ļ	9	. "		9	410	0.129130	0.132950
28		HINICOC	0	, c	•	9 a		•	180	0.065940	0.011590
28 4.85 4.85 6.39 6.30 6.3 12.00 1880 6.993436 22 4.46 6.1016648 6 6.39 6.39 6.3 12.00 1880 6.993436 22 4.46 6.1016648 6 6.39 6.30 6.30 6.3 12.00 1880 6.998590 6 6.39 6.40 6.1019500 6 6.30 6.40 6.10 11350 6 24 6 6.1019500 6 6.30 6.40 6.10 11350 6 24 6 6.1019500 6 6.30 6.40 6.10 11350 6 24 6 6.1019500 6 6.20 116648 6 6.10 11350 6 24 6.10 11350 6 6.10 116648 6 6.10 11350 6 6.10 11350 6 6.10 116648 6 6.10 11350 6 6.10 116648 6 6.10 116648 6 6.10 11350 6 6.10 116648 6 6.10 1166	×		32	٠	7		•	. 4	96.0	9 4 1 4 5 6	0 084490
26 4.85 10.0 0.30 0.3 12.00 140 0.11640 0.01180 0.0 12.0 140 0.105410 0.0 12.0 140 0.105410 0.0 12.0 140 0.105410 0.0 12.0 140 0.105410 0.0 12.0 140 0.105520 0.0 140 0.0	~		28	٠	4				900	201100	900000
29	L	HINTOIL	26	•	10		•	٠	981	00.000.00	
12	, ,	, , , , , , , , , , , , , , , , , , , ,	100	4.40	σ	3		10.50	4 4 0	0.116640	0.11/2/0
14. 12. 12. 12. 12. 12. 12. 12. 12. 12. 12	•		n (. 4	•		12.00	760		0.104920
9 4 6 4 9 6 6 4 9 6 6 4 9 6 6 5 12 0 9 14 0 0 13522 0 6	2	ARJURIE	12			•		200	240		0396650
29 4.84 9.0 0.440 0.5 12.00 140 0.039830 140	\Box	EWONEY	œ	4.73	4	. 4.	٠	77.00	2.		21.041.0
1	L	HINTOIC	58	4.84	o	0.40	•	12.00	140	070511.0	111011.0
TRSB	, .		. 7	8	σ	0.40		٠	140	0.038630	•
1	.,	0.00	• •		, ;			•	250	0.103600	
TRSB	•	HINICOL	7		4 .	٠	•		250	0 116000	0.117530
18 4.51 7.4 0.00 0.00 11.00 0.00 0.00 0.00 0.00 0	u	HINICOC	21	4.0	77	9.30	•	•	000	A 992889	
6 4.66 11.0 0.30 1.1 1.0 0.00 0.00 0.00 0.00 0		AWLOR	18	4.51	٦.	99.9	•	•	275	2000	
12 4.29 7.5 0.80 1.1 11.60 770 0.095650		ū	, «c	4.66	11.	0.30	•	12.90	300	. 10192	-, '
TRESO TR		1	, ,	7	7	88	1.1	11.60	770	.09292	0.090040
TRESO			T (•		ā	-	69	770	960	0.100680
TRESA TRESA TRESA TREAD TREAT TREAD TREAT TREAD TREAT TREAD TREAT TREAD TREAT TREAD TREAT	×		12	٠		ē (• (12721	
RESQ TR610 TR640 TR670 TR700 0.053600 0.0401300 0.0352000 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01329600 0.01349600 0.01329600 0.01748600 0.01748600 0.01748600 0.01748600 0.01748600 0.01748600 0.01748600 0.01748600 0.01748600 0.01779600	_		15	5.17	11.	٠	•	13.10	201		•
0.0536600 0.0536600 0.0536600 0.0352600 0.03359600 0.03359600 0.03359600 0.03359600 0.03359600 0.03359600 0.03359600 0.03359600 0.03359600 0.03369600<		TR550	TRS80		TR610	TR640	Ħ	67.0	TR700	TR73	75
0.015590 0.0152900 0.0231900 0.0143800 0.0132900 0.0105000 0.0105000 0.0125900 0.0235800 0.0307800 0.0235700 0.0235800 0.0307800 0.0235700 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.0235800 0.021320 0.0253500 0.0258300 0.0258300 0.0217300 0.0258500 0.025850			Ę				6	00960	.02	6	800
0.00100 0.0020500 0.00201900 0.00235700 0.0026800 0.0174500 0.00174500 0.002051320 0.002053500 0.00301700 0.00235700 0.00226800 0.00205500 0.002051320 0.00205500 0.00201700 0.00235700 0.00205500 0.0020500 0.002			000		٠		•	20000		6	9500
0.01060 0.0495300 0.0307800 0.0725700 0.0495300 0.0307800 0.125990 0.0953100 0.0621700 0.01716700 0.0176700 0.023500 0.0251700 0.0173200 0.0177300 0.0156900 0.052960 0.0551700 0.0177300 0.0156900 0.052940 0.0277700 0.0177300 0.0177300 0.052940 0.0277500 0.0177300 0.0177300 0.057940 0.045600 0.0177300 0.0177300 0.077940 0.0568700 0.0177300 0.0177300 0.077940 0.0576200 0.0177300 0.0177300 0.077940 0.0576200 0.0177300 0.0182500 0.077940 0.0576200 0.0117300 0.0182500 0.077940 0.04771800 0.0425000 0.0117500 0.0182500 0.077940 0.04771800 0.0425000 0.0225000 0.0225000 0.0225000 0.077940 0.0477100 0.0225000 0.0225000 0.0225000 0.0225000 0.04770			0.40		٠		3 6	0000	•	6	200
125990 0.0950500 0.0821700 0.0791100 0.017500 0.0156900 0.055300 0.0253500 0.0253500 0.0253500 0.0253500 0.0554700 0.0553500 0.0554700 0.0553500 0.0555300 0.05555300 0.0555500 0.055500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.0555500 0.055500 0.0555500 0.		.06106	.049		•		9.0	30800			500
0.02320 0.0527800 0.0241900 0.0173200 0.0160000 0.0156900 0.052320 0.0529800 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.0560100 0.037300 0.0275200 0.0275200 0.017300 0.017500 0.		12500	9	•			0.0	16700	è		000
062960 0.05297800 0.05260100 0.05603500 0.04472300 0.04437900 0.052960 0.0420300 0.05297800 0.0320900 0.0217800 0.0173100 0.0173100 0.0177900 0.052940 0.0156000 0.0156000 0.0173100 0.0177900 0.0156000 0.0156000 0.0173100 0.0177900 0.0156000 0.0156000 0.0173100 0.0177900 0.0156000 0.0173100 0.0177900 0.017		066671.0	9 6		•		6	60000	6	9	3600
0.0597800 0.0597800 0.0320900 0.0217800 0.0173100 0.0173000 0.0325940 0.0345700 0.02277800 0.0255340 0.0345700 0.03277800 0.0255340 0.0345700 0.03277800 0.0217800 0.0217800 0.03173100 0.0345700 0.0217800 0.0255300 0.0158300 0.0345700 0.0217800 0.0255300 0.0158300 0.045800 0.04246600 0.0382300 0.0332200 0.04246600 0.0325400 0.0336900 0.0356100 0.0255400 0.0325400 0.0336200 0.0325400 0.0255400 0.032524200 0.0336200 0.0325100 0.0225400 0.032524200 0.0336200 0.0325100 0.0225400 0.032524200 0.0258300 0.02524200 0.0336300 0.02524200 0.0336300 0.02524200 0.0336300 0.02524200 0.0336300 0.02524200 0.0336300 0.02524200 0.0315200			9	•	٠	•	•	20200	AA	65	100
0.040510 0.0420300 0.0320900 0.0217800 0.0256300 0.0229700 0.0229700 0.0345500 0.0345500 0.0345700 0.0275200 0.0255300 0.0329700 0.021790 0.0571900 0.01345700 0.0420600 0.0071500 0.0382300 0.0349000 0.021790 0.0571900 0.0453200 0.0420600 0.0420600 0.0382300 0.0349000 0.0571900 0.0453200 0.0426800 0.0225400 0.03182900 0.0458700 0.0238300 0.0228200 0.038300 0.0238300 0.0228200 0.0338440 0.0238300 0.0238300 0.0258800 0.0258300 0.0228200 0.0358100 0.0228200 0.0318400 0.0238300 0.0228200 0.0358300 0.0238300 0.0218600 0.0315200 0.0155800 0.0258300 0.0258300 0.0258300 0.0258900 0.0258300 0.0258300 0.0258300 0.0258300 0.0258300 0.0258300 0.025820			.05					2007	•		550
0.052940 0.0445500 0.0345700 0.0275200 0.0255300 0.0229700 0.021790 0.0158300 0.045500 0.0158300 0.0453200 0.04426000 0.04426000 0.04426000 0.04426000 0.04426000 0.04426000 0.04426000 0.04426000 0.04426000 0.0442600 0.0442600 0.0442600 0.0442600 0.0426600 0.04283300 0.0424200 0.0424200 0.04283300 0.0424200 0.0424200 0.0424200 0.0424200 0.0424200 0.0424200 0.0424200 0.0424200 0.0426600 0.042600 0.0426600 0.0426600 0.0426600 0.0426600 0.0426600			9		.032	•	9	/3100			2000
021790 0.0568300 0.01568300 0.0111300 0.0071500 0.0084500 0.027790 0.0568300 0.0453200 0.0420600 0.0225400 0.0225400 0.01849000 0.0568700 0.0271900 0.0251900 0.02561900 0.0225800 0.0271900 0.02310200 0.02261900 0.02288300 0.0224200 0.0238100 0.0224200 0.0238100 0.0224200 0.0238100 0.0238100 0.0224200 0.0238100 0.0238100 0.0224200 0.0238100 0.0238100 0.0224200 0.0238100 0.0238100 0.0224200 0.0238100 0.0238100 0.0228900 0.0250800 0.02			GAAR		934		0.0	56300	. 0229	e i	2500
0477940 0.0571900 0.0453200 0.0420600 0.0332300 0.0349000 0.0514900 0.05149000 0.05149000 0.05151900 0.0471800 0.0330200 0.04268500 0.0238300 0.0238300 0.0254200 0.03382420 0.0238300 0.0258400 0.0258400 0.0258400 0.0258400 0.0258400 0.0258400 0.0258400 0.0258400 0.0258500 0.0315200 0.0315200 0.0258500 0.0258500 0.02186200 0.0315200 0.0315200 0.0258500 0.					200	9 9111388	00	171500	.0084	6	2100
061610 0.0271990 0.0330200 0.0268500 0.0225400 0.0182900 0.0330200 0.0326800 0.0225400 0.0325400 0.0336800 0.0268500 0.0225400 0.0326800 0.0326800 0.0225400 0.0325800 0.0326800 0.02258300 0.0225400 0.0326810 0.02258300 0.0225800 0.02258		061770.0	ינ		i			00200		9	5500
061610 0.0471800 0.0330200 0.026890 0.0228490 0.022840 0.0228400 0.0338200 0.0338200 0.0238300 0.0238300 0.0238300 0.0338200 0.03384200 0.0238300 0.0428500 0.044900 0.0449000 0.044900 0.044900 0.044900 0.044900 0.044900 0.044900 0.0449000 0.044900 0.04		0.011940	.00.			0.021200	9 6	300	•	6	000
058700 0.0483500 0.0336800 0.0268500 0.0433300 0.0254200 04440 0.0338400 0.0210580 0.0191600 0.0165800 093610 0.0331200 0.043600 0.021050 0.0315200 0.0155800 084740 0.0733200 0.0429600 0.0316200 0.0116400 0.0129600 0643630 0.0429600 0.0449600 0.0184400 0.0449600 0.0116400 0.0116400 0653630 0.075200 0.0468500 0.042600 0.0449600 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0426500 0.0257300 0.0257300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 0.02573300 <td></td> <td>0.061610</td> <td>. 0471</td> <td></td> <td>•</td> <td>B . B 26 1 9 0 B</td> <td>9</td> <td>00407</td> <td></td> <td></td> <td></td>		0.061610	. 0471		•	B . B 26 1 9 0 B	9	00407			
0.035610 0.0338400 0.0250800 0.0210500 0.0191600 0.0165800 0.033610 0.0338400 0.0250800 0.034440 0.0338400 0.0443600 0.0354200 0.0315200 0.02596900 0.0455600 0.021200 0.0315200 0.0159100 0.02596900 0.02129100 0.02129100 0.02129100 0.0116400 0.0116400 0.0118400 0.0118400 0.0116400 0.0118400 0.0118400 0.0116400 0.0118400 0.0118400 0.0116400 0.0118400 0.0118400 0.0116400 0.0118400 0.0258500 0.025850		9 959799	0483			0.0268500		238300	٠	9	9000
093610 0.053820 0.043600 0.0336200 0.0315200 0.02596900 084740 0.0733200 0.0429600 0.03364200 0.0315200 0.0129100 084740 0.0733200 0.0429600 0.0429600 0.0449600 0.0118400 0.0118400 0.0118400 106260 0.0919000 0.0475200 0.061900 0.0436600 0.0118400 0.0118400 1067580 0.0919000 0.0445600 0.0446600						8038108		91688		0	3200
0835610 0 0.0578900 0.04429600 0.0221200 0.0149900 0.0129100 0.06153200 0.0429600 0.0221200 0.02149900 0.0129100 0.06153200 0.0429600 0.0221200 0.01149900 0.01184000 0.01184000 0.0184000 0.0184000					٠	000000000000000000000000000000000000000		000010	A00R	6	3300
084740 0.0733200 0.0429600 0.0821200 0.0149900 0.01184000 0.01184000 0.01184000 0.0253530 0.0255500 0.0184400 0.01184000 0.01184000 0.01184000 0.0184000 0.0184000 0.0184000 0.0519000 0.0545500 0.05519000 0.05519000 0.05519000 0.05519000 0.05519000 0.05519000 0.05519000 0.05519000 0.05518000 0.05518000 0.05518000 0.05518000 0.05518000 0.05251800 0.02318000 0.02318000 0.02251800 0.025251800 0.02251800 0.02251800 0.02251800 0.02251800 0.02251800 0.025251800 0.02525800 0.0252800 0.02			. 067		٠	0.0304200		00701			600
063630 0.0486300 0.0262400 0.0184400 0.0116400 0.04118400 1,06260 0.0919000 0.06486300 0.06475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.051600 0.051600 0.051600 0.051600 0.0526500 0.0526500 0.0526500 0.0526500 0.0226500 0.0226500 0.0226500 0.0226500 0.0226500 0.0227300 <td></td> <td></td> <td>. 673</td> <td>_</td> <td></td> <td>0.0221200</td> <td>9</td> <td>43300</td> <td>16710.0</td> <td>יפ</td> <td>9000</td>			. 673	_		0.0221200	9	43300	16710.0	יפ	9000
106260 0.0919000 0.0648500 0.0426300 0.04490600 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0475800 0.0445800 0.0496500 0.0590300 0.0475200 0.0445800 0.0496500 0.0590300 0.0494300 0.0407800 0.0475200 0.047800 0.047800 0.0318000 0.02318000 0.02293300 0.0478330 0.0494300 0.04031800 0.0318000 0.02259000 0.0225500 0.055800 0.03264900 0.0231800 0.02245900 0.0227300 0.072200 0.0588600 0.0309800 0.0231800 0.0245900 0.0227300 0.0422800 0.0422800 0.0627300 0.0627300 0.0422800 0.0432000 0.056750 0.0607300 0.0607300 0.0422800 0.0197000 0.0161600			949			0.0184400		116400	. 611	9	2500
100226 0.051900 0.0475200 0.04426300 0.0386300 0.0386300 0.0381600 0.03877580 0.0515000 0.04475200 0.04426300 0.04386300 0.04475200 0.04426300 0.04426300 0.02386300 0.02383300 0.02593300 0.0407800 0.0447800 0.0337000 0.0331000 0.02545900 0.02545900 0.02545900 0.02545900 0.02545900 0.02545900 0.0257300 0.0257300 0.02545900 0.02545900 0.0257300 0.0257300 0.02545900 0.0257300 0.0257300 0.0257300 0.02545900 0.0257300 0.0257300 0.0257300 0.0257300 0.0257300 0.0257300 0.0257300 0.0257300 0.0525800 0.0523800 0.0523300 0.0157300 0.0355900 0.0355900 0.0525800 0.0523300 0.0523300 0.0157000 0.0355900 0.0525800 0.0523300 0.0157000 0.0157000 0.0555600 0.0525800 0.055800 0.0		90000			•	9 9519999		99899	. 047	0	5300
077580 0.0590300 0.0475200 0.0475200 0.033700 0.0335000 0.0590300 0.0459300 0.0459300 0.0459300 0.0459300 0.0457580 0.0467760 0.0467760 0.0433700 0.0453700 0.0457500 0.0457500 0.0457300 0.0457300 0.0457300 0.0457300 0.0554400 0.0354400 0.0554000 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05245900 0.05471300 0.0471300 0.0472900 0.0472900 0.05472000 0.05472000 0.0567550 0.0567550 0.0567550 0.0567550 0.0567550 0.0567500 0.05		0.100200							900	6	27.00
.062850		0.017580		_	•		•	990000	2000		900
075350 0.0494300 0.0403800 0.0354000 0.03310000 0.0295900 0.075350 0.0494300 0.0364900 0.0295200 0.0245900 0.0227300 0.0257300 0.0257300 0.0257300 0.0257300 0.0257300 0.0257300 0.025200 0.0257300 0.0257300 0.025200 0.025300 0.0253300 0.0471100 0.0432000 0.0432000 0.0432000 0.0457500 0.0457500 0.0452000 0.0452500 0.0452500 0.0507300 0.0507300 0.0454700 0.0457000 0.045500		0 067850					•	315000	.0293		300
.075350 0.0546400 0.0364900 0.0295200 0.0245900 0.0227300 0.075350 0.0273500 0.0227300 0.025550 0.0256400 0.0309800 0.0238000 0.0238000 0.0309800 0.0238000 0.0238000 0.0238000 0.0238000 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800 0.025800		000000		_				331000	.0295		5200
075350 6.0546400 6.0354900 6.0231800 6.023300 6.0123000 6.0123000 6.022200 6.0123000 6.0123000 6.0123000 6.022200 6.0231800 6.0471100 6.0432000 6.0432000 6.062380 6.0652800 6.06515600 6.0471100 6.06432000 6.065300 6.065300 6.065300 6.065300 6.065500 6.055000 6.055		0.070330					•	245000	0227		7200
072200 0.0588600 0.0309800 0.0231800 0.0151300 0.0432000 0.083790 0.0771300 0.06432000 0.083790 0.0771300 0.06432000 0.083790 0.0773500 0.0667700 0.066770 0.066700 0.0456700 0.0456700 0.0456700 0.09595900		0.075350	•			0.0230200	•	900			25.00
. 083750 0.0773500 0.0622800 0.0515600 0.0471100 0.0432000 1,00250 0.0805300 0.0667300 0.0664700 0.0422800 0.0335500 0.0825150 0.0805000 0.0667300 0.0523300 0.0197000 0.0161600		0.072200	ø		0		٠	Ω	٠		9000
100229 0.0835300 0.0507300 0.0464700 0.0422800 0.03395900 0.03		G GB3700	•					^	•		2000
1806290 0.00120280 0.0007300 0.0023300 0.015000 0.0161600 0.01			•					122800	0	9	7100
ADERTE A ACEDRAR A ARADOM B. 8223388 B. 8197800 B. WILLIAM		100			9			0000	•	6	200
0.000000 0.000000 0.0000000000000000000		0.085350	0.0562800	_	8.0309200	0.0223300	٠	000/61		10.0	2001

_	,
	۰
۲	•
4	
	١
_	•
-	۰
•	٠
C	,
⊢	1
C	į
ř	í
_	•
=	į
9	į
2	•
3	É
=	i
	ì
-	•
_	
⊆	į
2	•
-	į
	•
v	2
u	J
Ċ	J
2	•
- 2	ř
- 2	•
•	
٠	4
u	J
_	
ū	Ĭ
ū	ì
ă	
a	
٥	ć
4	i
ā	ř
7	
9	
ā	Ľ
Q	L
4	
٠	
(
Ü	ι
ō	į
7	
0	
C	
- 4	

TR470	0.056640 0.083750 0.136370 0.040730 0.040730 0.0524450 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200 0.0234200	
TR443	0.051610 0.081356 0.137890 0.039120 0.039120 0.024030 0.024030 0.024030 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.024440 0.0244651	TR732 007.7600 00306900 00306900 00306900 001607000 001607000 001707000 001707000 001707000 001707000 001707000 00107000
۲	2280 . 6 2280 . 6 2280 . 6 2250 . 6 225	
S04	112.80 115.80 111.90 111.90 111.90 111.90 113.60 13.20	0.012286 0.0133980 0.033980 0.035180 0.01286 0.011100 0.011100 0.011100 0.012090 0.012090
000	<i>©©©©</i> യയയപയ 4യൻ4പ® レ1&&പയയയൻ4 ഹ്രാഗ്ഗ്രയൻ4ർപയയൾ4 <i>©</i> ന്റ്പ്രമേയ4&®	TR676 0.031519 0.0319110 0.0319120 0.0319120 0.019290 0.011740
TTLCHL_A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TR640 015090 015090 041080 025870 021790 046330 046330 0128290 022911 012850 012850 012850 012850 012850 012850 012850 012850 013850 013850
SD	@ @ @ @ 4 u u u u u u v v 4 4 v u u v u u u u u	16 53 55 53 55 53 55 53 55 53 55 53 55 53 55 53 55 54 55 56 51 56 51 56 51 56 51 56 51 57 52 57 52 58 53 58 58 53 58 58 53 58 58 53 58
Ŧ	4 4 4 4 6 6 5 4 4 4 7 7 8 6 5 6 5 6 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6	73 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
PROFILE	00 70 1110 1111 08 02 02 05 05 05 05 05 05 05 05 05 05 05 05 05	TR5 88 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
NAME	SILVESTE SILVESTE OTTER MATAGAMA THOMAS X MATAGAMA THOMAS ATOMIC EAST L. AGAWA MADER MADER MADER MADER MADER MADER MADER MALLOT MONTREAL X V V V V V V V V V V V V V V V V V V	TR558 0 055200 0 074530 0 0815200 0 0815200 0 018520 0 046170 0 019060 0 019070
LAKE_ID	88888888888888888888888888888888888888	TR520 0 0 055330 0 0 079910 0 0 089910 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
ă
LIMNOLOGICAL
AND
ANCES
REFLECT
PROBAR
CORRECTED

TR470		.0208	.0422	. 0223	.0231	.0288	0.0153400	.0217	.0179	. 0206	.0196	.0315	.0203	. 0205	.0222	.0244	. 0381	. 0245	. 0211	. 6333	.0219	.0275	. 0237	.0946	.0201	.0261																										
TR443		0.0238015	.038416	.024260	.023978	.029347	.017570	. 022860	.019430	.019280	.020390	.034870	.022240	.020480	. 023660	.026850	.037800	.026280	.022440	.0324/0	.022400	. 027500	.023140	.099610	.020910	.027264	TR732	9908500	200000000000000000000000000000000000000	01241/1	9959399	2719689	0144335	0004200	0043100	9965799	0067100	0113300	0040500	0032300	0080100	0047400	0132200	0058800	0065800	0112000	0052700	0133400	.0086400	0939300	0064600	0134473
₹		55.0	•		•		•	52.	•			•	•	•			•		•	•								9	9 6	9 6	9 6	9 6	9 6	9 6	9 6	9 6	9 6	62	6	0	0	9	0	60	6	0	0	9	6	0	69 (0
LIMNULUGICAL DA DOC SO4		4.38	ij	٦.	٩.	~	4.16	o.	۲.	۲.	o.	m.	ø	ო.	ĸ.	ė	9	ø.	₹.	፣ '	φ.	o.	₹.	ø.	o.	o.	TR700	2	3	9	9	9	ē	900	9	9	Š	6	90	90	.01	900	.016	300	016	.014	000	017	0.011230	133	0.009746	0
AND LIMNOL		5.1	٠	٠	•	٠	٠	•	•	٠	•	•	•	٠	٠	٠			٠	•			•				TR670	6 014307	700000	2012 2012 2012 2012 2012 2012 2012 2012	0.009000	05/010.0	6.619356	0.011400	0.00/000	917710.0	0.010820	0.015020	0.007170	0.007050	0.010090	0.008520	0.018720	0.010050	0.011170	0.017380	0.009250	0.018930	0.013350	0.119360	8.011090	9.016734
REFLECIANCES TTLCHL A	I	2.10	3.61	1.60	1.80	2.60	4.30	1.40	4.40	1.80	2.80	3.60	1.40	1.80	2.70	6.68	4.11	3.88	96.99	1.50	1.11	5.30	1.40	1.80	1.20	1.20	TR640	015289	707010.	.021083	200110	197110.	1020201	99/119.	0000000	912579	012310	019170	008640	.010030	.012230	.010970	.021960	.011860	.012660	.017670	009750	.022410	0.015940	109440	.011710	017772
PRUBAR R SD		3.2	•	•	•	•	•				•	٠	•		•		•	٠		•		•		•			10	5013	9 10 0	1170	0400		3111	9000	3000	20.70	3290	2170	2660	1140	5540	1120	1710	7130	3420	2520	3190	980	1150	140	370	585
URRECTED PH		7.16	œ	~	~	<u>.</u>	•	œ	Φ.	ø	~	?	ø.	₹.	7	0	?	?	4	'n	•	თ.	۲.	m.	0	Ö	TR6	6	9	9	9 6	9	9	9 0	9 6	9 6	6	Ö	0	0	0	9	6	9	9	ö	9	ö	6	- 1	<u>.</u>	5
CUP PROFILE		46	64	65	52	22	62	38	7	35	7	47	28	53	8	28	53	56	17	32	23	7		12			TRS80	0 87 10 6	600100	0.0442/3	0000000	206770.0	0.026215	0.01/240	900010.0	8 82828 8 828828	0.016310	0.026390	0.016620	0.021590	0.018430	0.019170	0.044500	0.022440	0.020010	0.025180	0.017780	0.033160	0.023330	0.162290	6.615146	195120.0
NAME		SHOEPACK	PATTERSO	RAND	CARPENTE	MITCHELL	FULLER	QUINTET	TAY	×	MCCOLLOU	DICK	×	MCGOVERN	×	GRIFFIN	į	ADELAIDE	× :	×	BONE	WISHART	LITTLE T	TURKEY	DREW	DREW	TRSSØ	91788		00000	10070.		11620.	501400	57110.	92929	.01733	.02697	.01814	.02233	.01943	.02080	.04314	.02337	.02133	.02713	.01820	.03245	0.023600	16513	101/10	. 02121
LAKE ID	l	Ŧ	'n.	ij	9	₽	II	*	9	æ	ð	9	ž	m,	ວ	֓֞֞֞֞֞֞֞֞֞֞֞֞֞֞֞	9	J	L	¥ !	'≠	Z	Z	¥	2	8	TR520	9 928392	766970.0	0.04040.00	0.6510.0	051470.0	0.025852	0.014020	0.0103/0	0.01310	0.015720	0.026650	0.018730	0.020680	0.019440	0.022770	0.039250	0.025340	00.013300	0.026760	0.016790	0.029230	0.024920	0.131230	0.018466	0.024323

0252100 0260200 0245900 025900 0290600 0291000 0214000 0225900 0225900 0225600 0446800 0385600 0386600 0139500
0081600
01087300
01087300
0187800
0226800
0226800
00881900
00889000
00889000
00889000
00889000
00889000
00889000
00889000
00889000
00889000
00889000 **TR732** 0228400 0222200 0284200 0287800 0304900 03100000 0150200 0257300 0257300 0257300 0257300 0257300 000000000000000 0177100 0114400 0110200 0110200 0226600 0226600 0226600 012600 013600 0135600 0116800 0135600 0141400 0130834 DATA 0000000000000000 5.17 5.93 5.93 5.18 6.18 7.77 4.17 8.29 11.09 10.90 10.90 3.79 .0213600 0122500 017200 017200 0176300 0316900 0013000 00153000 00153000 0016300 0016300 0016300 LIMNOLOGICAL TR670 0-00-r040000000c REFLECTANCES AND .0228200 .0140200 .013700 .01374100 .0284600 .0284600 .0320100 .0050800 .014700 .0102900 .0102900 .0108000 .0108000 **TR640** TTLCHL_A 0000000000000000 0295100 0170000 0180400 0114500 0314500 031700 0177200 0177200 0177200 0177200 0177200 0177200 0177200 0177200 0177200 TR610 PROBAR 000000000000000 CORRECTED 0374600 0198400 0208100 0381300 0381300 02074000 0201700 0219400 0219400 0143600 0143600 0143600 0153600 0153600 **TR580** PROFILE 0000000000000000 .0341200 .0189600 .0199900 .0343700 .0347200 .0114000 .0114000 .0117200 .0117200 .016700 .0147400 .016800 .016800 .016800 .016800 TR550 NORTH TI CRAYFISH WEST KAB WEST KAB NEWATEGU LINE FUNGUS FABEUNG DESOLATI PRINCESS LAUNDRIE LAUNDRIE CENTRE CENTRE CENTRE CENTRE CENTRE CENTRE CENTRE CENTRE CENTRE 00000000000000000 0183400 0183400 0209200 0305700 0318200 01262400 0126800 0126800 0176200 0176200 0176200 0176200 0176200 0176200 000000000000000

Table B.2.

PREDICTED SUBSURFACE REFLECTANCE AT DEPTH = 2 METERS
ALL PROBAR LAKES

NM700	000000000000000000000000000000000000000	000000000
NM670	_ + + + + + + + + + + + + + + + + + + +	0.00000 0.035741 0.025695 0.026698 0.246767 0.250065 0.049037 0.000000 0.382268
NW640	0.372809 0.298341 0.000000 0.0000000 0.0000000 0.0000000 0.000000	0.000000 0.000000 0.361601 0.000000 0.166700 0.269317 0.000000 0.492739
NW610	0.75450 0.13852 3.43590 0.00000 0.00000 0.17345 1.77531 0.17531 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00	0.00000 0.00000 0.25897 0.00000 0.17102 0.88900 0.00000 1.26419
NM580	1.31005 1.20635 1.20635 1.1720 1.11720 1.11552 1.13605 1.19605 1.19605 1.19605 1.19605 1.19605 1.19609 1.20626 1.20626 1.20626 1.20626 1.20626 1.20626 1.20626 1.20626 1.20626 1.20639 1.16619 1.20636 1.16619 1.20636 1.16619 1.20636 1.16619 1.20636 1.16619 1.20636	1.11344 1.12405 1.09617 1.20739 1.13617 1.23674 1.28015 1.14135 1.14135 1.14869
NMSEO	1.48311 1.40514 2.16382 1.36391 1.31019 1.36712 1.41035 1.37503 1.37503 1.37503 1.37503 1.37713 1.40977 1.60485 1.41537 1.26715 1.20685 1.3154 1.3156	
NM520	1.06232 1.16827 1.36034 0.944368 0.95406 0.95406 1.07247 1.10506 1.04061 1.10506 1.08992 0.69997 0.69997 0.69997 0.70764 0.70764 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.8877 0.86601 1.01469 0.93362 1.01469	
NW4 90	0.77986 0.91867 0.81160 0.86577 0.86577 0.86577 0.89074 1.01812 1.01812 0.75193 1.0235 0.75193 1.0235 0.75193 1.0235 0.75193 0	
NM470	0.54865 0.21532 0.65936 0.77176 0.70599 0.65948 0.92421 1.05220 0.92421 1.05220 0.70954 0.96332 0.709574 0.96332 0.709574 0.88332 0.709598 0.88333 0.709598 0.76399 1.01620 0.76399	6885 6885 7550 9220 9722 8772 8972 6500 6582 8915
NN443	0.00000 0.19863 0.32599 0.32599 0.243211 0.443211 0.73825 0.73895 0.188977 0.188977 0.188977 0.188987 0.188987 0.188987 0.188987 0.188987 0.188987 0.188987 0.188987 0.188987 0.188987 0.24121 0.24151 0.24151 0.24151 0.24151 0.24151 0.26288 0.38998	0.38142 0.38142 0.381442 0.53714 0.44731 0.22839 0.24601 0.89134
NAME	N.TILLEY L.TURKEY WISHART X DREW BONE ADELAIDE X X X X X X X X X X X X X X X X X X X	UNION DYER GREYOWL DREW ALVIN X X ROI SHOEPACK PATTERSO
LAKEID	PAAAAAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	# 6 T E E E E C C C C C C C C C C C C C C C
088	4 4 4 4 4 8 8 8 9 8 8 9 8 9 8 9 8 9 8 9	144444444 844444 144444 14444

PREDICTED SUBSURFACE REFLECTANCE AT DEPTH = 2 METERS ALL PROBAR LAKES

NM700	c) (> 0	o	0	0	0	0	a	· C	o c	0 0	o (0	0	0	0	0	0	C	0	ď	a	c	c	0 0	0 (0	0	o (0 (5 (o (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0)	0 (ပ (0 (o c	0)
NM670	2055300	1 6	•	л.	'n	0.685280	~	0.289805		8						0.212205		0.237574	0.231605	0 137590	0.497235	0.191313	0.080883	0 242051	0 125852	25057	$\frac{3}{2}$	676760.0	0.312183	0.151021	2 :	0.03000			340543	0.627065	0.071929	0.610849	0.142067	0.285328	0.112221	0.00000	12863	0.013729	0.00000	•	•	.03014		10028	.22712	.03014	90771	0.1301.9	•
NW640		•	. 5640	. 2924	1.02254	0.95552	.1866	.3618	8922	•	200	51677.0	•				0.10845		0.31323		0.34488	0.84940	0.42121	0 84278	2000	0.2003	0.24621	0.7350	08//R.O		0.65020	1.13611	0.0000	0.16430	A8185	0.97414	0.59435	1.05419	0.84462	1.51589		0.27972				0.54038				0.73212	1.00353	. 6329	. 1432	0.70233	10/4.
NW810		٠	2020	0023	2.22618	2.54210	3147		77B4	•	11040.1	•				0.69417			00000	•	5118	1 32781	78085	81168	0.02110	0.12210	7,000.0	40000	1.91025	1.84675	1.16727	3.65181		1.15139			0.88627						1.34666			0.92119	æ	.4973	. 1069	.4768	.4117	69	.6862	523	. 2244
NM580	TOBAL F	•	3	٠	•	•		1.19252	•	٠	00070.1	71540.1	•	4	7	1.33784	1661	3004	1 21163	•	•	•	30483	•	•	•	1.38383	•	•	•	•	•	•	1.3/092	•	4264	1.42446		. 10	Ψ.	4.	1.33513	. 58	38	.29	.3797	•	•	•	1.49753	•	. 8124	611	1.59886	1.58619
NMSEO	•	1.51830	1.38507	1.58985	1.89845	1.89478	1 28912	1 38598	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000	2.02506	2.2882.2	0	1.85290	1.91659	1.63520	1.35207	1 52017	144990	2001	1.01603	11077	01611.1	2467	2020		1.86660				2.16595						1.66608	•	1.94130		2.05748	•	ď	1.74791	.7301		1.74154	•	.7131	.0684	.7467	316	949	٠	. 501
NM520		0.94673	1.09838	1.23460	9 19178	2 03642	00000	1.00003	70760.0	2.30440	2.54512	•	•	d		, ,	·		1.0000	00077.1	1.0480	1.19038	7711421	1.0400	4255	2.11243	4798	2.52019	2.46544	4.03103	3.39491	4.04127	1.12609	1.66061		1444	3D 0	9 7			3.37399		853	000		21			•	2.67110	•	۲.	2.56337	3.33704	4.31593
NM 4 90		0.81973	1.11419	0.81762	00088	1 70456	2 8	1 0	- 1		2.42865	w	6038	9	0083		0.0001		7 (1.07/37		, 100						•					٦.	•		1.75028	יִי	•	: "	•		•	1,91700		2.27248			١,	۳.	.73	_	'n	204	5.06307
NM470		0.73439	0.99178	•		יי	1.42331	יפ	φ.	∹	2.25864	۳.	æ		•	•	٠	0.63443	0.92198	~	1104	-	1.92820	1.34465	1.24654	2.21130	2.97398		2.29708							8859	1.58376	u) (٠,٠	ă L		F 41572			•	•	0082		4535	. 6	5,38949	.42	ď	•
NW443		0.31673	0.85875			07191.1	1.02243	0.34975	0.08892	3.60465	1.83185	3.15396	4 20310	1 77483	2 03875	0.000.0	0.8830	0.08991	0.39886	0.91999	0.91577	1.63828	1.94379	1.18558		2.13123	3.31711	3.59379	2.29755	4.40427	3.83033	3.80499	0.46591	0.58623	0.04248	1.48707	1.01451	1.08473	1.67788	1.62435	2./8331	04/18:4	10000	100001	1.39203 F 7094B	0.70916	01670.0		1 00342	86690 6	1 22678	5.90220	2.17399	2.68035	8.06905
NAME		MITCHELL	TLLGANAM		מבו עצ	MAIAGAMA	MATAGAMA	THOMAS	×	OTTER	SILVESTE	CHINIGHT	TABACION			FREDERIC	CEN RE	×	MUDDING	LAUNDRIE	×	×	STOUFFER	×	×	CHINICOC	×	CHINIGUC	, ,	u - -	AUC L	MAP INPTE	I AIRA	×	: ×	SOLACE	MAGGIE	PILGRIM	BLUESUCK	×	N.YORSTO	× :	× :	JERRI	ARE DOMO		WADON		MATTER		< >	OTTER	SILVESTE	×	×
LAKEID		Ş	, Ç) (5	404	39A	398	390	38D	380	250) (200	80 G	280	X02	270	26D	XOX	248	27.A	28C	28D	310	328	348) (325	976	010	200	466	308	314	23E	22D	22C	23A	194	188	17.	154	T (130	134	124	4 1	7 ()	504	7 6	202	786	320	37E
088	!	7.4	י געל	0 1	9	67	89	69	9	8	. 6		2 0	5 1	65	88	67	89	69	2	71	72	73	7.4	. 2	7 2		- 0	2 6	2 6	2 5	•	70	2 4	00	88	87	88	68	င္တ	91	92	93	46	96	96	76	30 G	7	3 :	101	107	2 5	ָ מַלַ מַלַ	108

PREDICTED SUBSURFACE REFLECTANCE AT DEPTH = 2 METERS ALL PROBAR LAKES

	NM87C	0.0062f 0.2524c 0.0972f 0.0017f 0.3625g 0.225g 0.000C 0.1331 0.000C 0.135f 0.025g
	NM640	0.70419 0.60313 0.62600 0.25366 0.67440 0.89222 0.75446 1.02627 0.71536 0.69861 1.09887 2.12839 0.06935 1.18300
•	NW610	1.06586 0.59416 0.69486 0.23080 1.21013 1.21013 1.22086 0.73545 0.73545 0.76720 1.22283 0.51954 0.00000 1.36114 0.76850
	NM580	1.47489 1.31127 1.35235 1.27630 1.66018 1.34395 1.37628 1.38624 1.38624 1.2680 1.14467 1.36592
))	NM550	2.18197 1.95288 1.95288 1.80080 2.40008 2.23755 2.23755 2.01388 1.93068 1.93068 1.35689 1.35689 1.35689
	NM520	3.06550 2.94264 2.81354 2.59854 3.77462 3.17466 3.85609 2.96846 1.66773 1.04007 1.4965
•	NW490	3.21326 3.76326 3.14004 3.31313 3.91831 2.62601 4.04992 4.90902 3.31906 2.27122 1.64077 2.69200 0.93433 1.37966
	NM470	3.09218 4.12373 3.19086 3.62640 4.10773 2.68419 4.67306 5.40606 3.42374 1.92484 1.24867 1.26989 1.26989
	NH443	2.84825 4.23478 2.97076 3.73001 4.28329 2.18825 6.86574 3.20465 1.65993 0.91471 1.82393 0.70233
	NAME	LAMLOR CHINIGUC CHINIGUC CHINIGUC X X CHINIGUC DOUGHERT FREDERIC CENTRE X STOUFFER LAUNDRIE
	LAKEID	336 336 336 334 334 334 336 200 200 200 200 200 200 200 200 200 20
	OBS	107 108 109 110 111 111 111 111 111 111 111 111

	R700	0			, c		.	۰ د	0	0	0	· C	, (۰ د	5	0	0	0	a	· C) (,	,	۰ د)	0	0	0	0	0	0	0) C	0	· c) C	o c	0		o c	o c) (.	5 (o (o (o (> c	>	۰ د	۰ د)	0	0	0	0	0	0	0	
	R670 R	0.0038500	0.0021200	0.0059100	0013600		0.001	0.0013500	0.0014500	0.0010600	0.0022400	0.008800	0000000	0.002000	0.0024800	0.0019700	0.0013300	0.0003000	0.000000	0000000			000000	0.002000	0.0021400	0.0027800	0.0032700	0.0028400	0.000000	0.0017400	0.0018000	0.0021200	00013000	0001500	0.005800	0.002300	0.000.0	0.0017000	0018000	0.000	200000	0.0032500	0.022800	0.002/100	0.0020300	0.0016778	0.0030656	0.00033/0	0.0020575	0.00000	0.0033371	0.0019959	0.0034718	0.0034937	0.0021468	0.0014603	0.0043798	0.0028173	0.0021886	
	R640	0.0051100	0047100		0048400	000000	0.002000	0.0018/00	0.0019500	0.0028700	0.0054800	0.031800		0.0030300	0.0031500	0.0008100	0.0028200	0.0044500	0080100	0000000	0.001	2007	0.003	0.0023900	0.0045500	0.0050100	0.0059200	0.0046700	0.0024900	0.0039100	0007100	0.0027900	002700	02/01/02	000000			0.025500	0001100	0.0028800	0.003000	0.000000	0.0048800	0.0054500	0.0041/00	0.001/619	0.004/141	0.0012992	0.0013941	0.0007281	0.0050498	0.0030341	0.0040029	0.0045541	0.0013949	0.0023457	0.005764	0.0033033	0.003039	
	R610	0.0118000			0.02000	0.01010	0.000000	0.0026300	0.0053900	0.0081400	0.0182300	0000000	0.000000	0.008/800	0.0018300	0.0015000	0.0038000	0.0074500	0063900	00000	0001500	200.00	0.00/4200	0.0088200	0.0080700	0.0090100	0.0103400	0.0115300	0.0027800	0.0058500	0 0049100	000000	2,450	20.00	0.01180	0.0136200	0.011600	0.00	0.00000	0.00000	0.0114300	0.0143600	•	0.0107800	•	0.0028389		0.0023584	0.0037642	0.0033320	0.0086787	0.0049448	_	0.0126212	0.0049408	0.0029763	0.0149476			
LAKES	R580	0.03500	•	0.01510.0	0.04664.0	0.010000	0.0088000	0.0024000	0.0099800	0.0134600		0000000	0.010.0	0.0113400	0.0111500	0.0029400	0.0068200	0.0116700	0046200	2000	0.01010	0.0125400	0.0113800	0.0079300	0.0120200	0.0128000	0.0164100	0.0199300	0.0048000		0019300		0.00	0.00000	0.0000	_	_	0.002500		O (9	_	_	_	_	_	_	ö	_	o.	0.0121767	0.0068497	0.0142680	0.0175439	0.0073054	0	0	C	0	
UES FOR ALL	R55 0		0.019100	0.0123700	0.0516800	0.0148800	0.0112700	0.0074600	0.0104000	0.0143800		0.050000	0.0126400	0.0108100	0.0118200	0.0039600		0.00		0.002800	0.01/6000	•	0.0129000	0.0052200	0.0131000	0.0126100	0.0178400	0.0240500	0.074300	20.00	200.0	0.033000	_		_	_	_		_	o ·	_	0	0	0	0	0	_	0	Ξ.	_	Ī	_	_	_	0		_	0.016267		
CORRECTED PROBAR VALUES FOR	R520		0.0113100		0.0177800	0.0116600	0.0038400	0.0088800	0089900	•	•	0.0227700	0.0122700	0.0108200	0.0129400	0 0031700	000000	0.00		0.0082800	0.0158500	0.0161400	0.0134900	0.0047100	0.0125400	0.0123800	0.0185000	0.055500		0.010.0	; •	o o	0.0074100	o ·	0	o	ö	o ·	o	o	0.0383100	ö	o	_	0.0102400	ö	ö	0.0062922	0.0087991	0.0094149	ó	o	Ó	Ċ) C	; c	-	
	R490		0.0083200	0.0116000	0.0000000	0.0030200	0.0103500		•	•	0.0188200	•	0.0139600	0.0083700	0.0144800	0.081500	200.0	0.00/00/0	0.0140900	0.0083500	0.0152300	0.0160900	0.0161200	0	C	0 0129200	0.00		0.0204100	0 (0	0.0016700	0.0099500	0.0029800	0.0024500	0.0035100	0.0047400	ö	o	ö	0.0435200	_	0.0289700	0.0213500	o	_	Ö	0	o		; c	d) (· c) C	0		9	0.0155103)
DIFFERENCED,	R470		0.002200.0	0.0125200	0.0000000	0.0100000	0.0110400	0.04200	0.00	0.0141900	0.0169600	0.0216700	0.0188300	0021110	015810		30000	0.0101600	0.0168300	0.0110800	0.0161200	0.0177900	0.0151300	0.0080300		5 6	5 6	5 6	0.07	0	0	_	_	_	_	_	_	0.0	_	ŏ		0.0																י כ	0 0	
J	R443		0.0051300	0.0119100	0.000000	0.0099300	0.0123800	0.21170	301110.0	0.0148000	0.0172900	0.0213200	0.0179800	0008000	000000	00000	0.0031800	0.0109000	0.0201500	0.0125100	0.0156500	0.020200	0000710	0082800	0.00200	0.01000	O.OIBIBOO	0.0185500	0.0302600	0.0197600	0.0128100	0.0038400	0.0140500	0.0088900	0.0064300	0.0060800	0.0078300	0.0142200	0.0174400	0.0107800				0.0211300	0.0149500	0 0101124	0.034243	0.0077658	7007700	0.0440.0	0.0120002	0.01030	0.012520.0	0.0146770	0.0146100	0.010531	0.010865		0.016000	0.0121856
	NAME		N. TILLEY	L. TURKEY	TURKEY	WISHART	>	300	UKEN	BONE	ADELAIDE	×	: >	< >	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N TON	ΙΑΥ	MCCOLLOU	DICK	×	MCCOVERN	CRIEFIN	>	מו -	ביים היים	KANU	BIG PINE	HAILEY	BARBARA	MONTREAL	PRINCESS	BRANT	DESOLATI	FUNCUS	KABENUNG	INE	NEWATEGU	WEST KAB	CRAYFISH	PAINT	AKE SIIP	I AKE SUP	MADER	; E >	4 C A WA	EACT	ATOUT) TEO - 1 1 1 1	TALLON .		DYER	מאם מים	CKEN	VI VI	×	ROI	SHOEPACK	PATTERSU	CARPENTE	MITCHELL
	LAKEID		A H	Z	ž	1	1 1	L (<u>ا</u>	¥	¥	8	2																			×					*					<>		_													FH		3 HB	₹
	088		-	• •	. ~	•	r 1	۰ ۵	80	7	80	σ		2;	11	12	13	14	15	18	7 7	•	2 .	7 (2	21	22	23	54	25	28	27	. 86	56	3 6	3 5			34	י מ	9 6	9 6	200	9 (n (₽:	•	4	4	4	4	4	₹ '	₹	49	9	51	62	ú	ف

	5,6	3 (o c	0	0	0 (o c	0	0	0	0	0	0 (O (o c	0	0	0	0	0 (0 0	> c) C	0	0	0	0 (> c	0	0	0	0 (ɔ c	0	0	0	0 (5 C	o c	0	0	0	0	0 0)) O	00	,
	8870	•		0039	•	0.00346	0.00378		0.00148		0.00279	0.00301	0.00324	0.001/8	0.00337		0.00515	0.00310	0.00238	0.00344	0.00268	0.0017	0.00391	0.00283	0.00000	0.00208	0.0000		0.00410	0.00602	0.00230	0.00591	0.00273	0.00257	0.0001	•	•	0.00103			0.00295	0.00249	0.00334	0.00202	0028	0.00354	0.00188	,
	R640		0.01005		0.00824	0.00411		0.00438	0.00432	0.00612	0.00388		0.00432			•	•	0.00767	•	0.0058		0.00437	0.00838	0.01088	•	•	0.00268		0.00677		•	0.00877		0.00304	•		0.00348	0.000	0.00617	0.00412		•		0.00597			0.00689	
	R810	0.00832	0.01966	0.02107	0.02308	0.00799	0.01825	0.01678	0.01727	0.01333	0.01269	0.01339	0.00750	0.01394		0.01079	0.01027	0.01541	0.01184	0.01160	0.01128	0.01146		0.01868		0.03005	0.0081	0.00850	0.01628	0.01860	0.01283	0.02233	0.02332	0.01138	0.01013	0.01653	0.00772	0.01285	0.01103	0.01018		0.01636	0.01594			.0147	0.01376 0.01079	
	R580	0.01018	•	0.03735	0.01377		0.03577	•	•	٠	•	0.02387			0.01249	0.01677	0.01890	0.02783	0.01599	0.02158	0.02593	0.02229	0.03415	0.04656	0.03879	0.00041	0.02424		0.03131	0.02819	0.02388		0.04253	0.03042	0.02160	0.03878	0.01846		•	•	0.02279	0.03358	0420	0.02352	•		0.03191	
	REEO	.0113		0.03734		0.01034	0460	0.04449	0.05868	0.04361	0.03557	0.03887	0.00962	0.01833	0.01429	0.01822	0.02388	0.03048			0.03628	0.03352	•	0.05990	0.05179	0.07183	0.02272	0.00563	0.03170	0.02861	0.02589	0.04015		•	0.03349			0.03398		0.01752					.0607	.0691	0.05262	
SAS	R520	0.01212		0.03317			0.05404			0.03511		024	•		0.01495		0.02744	0.02224			0.04316			0.0/800	0.07823				0.03562	0.02922	0.04238	0.04109	0.05950	0.08324	0.04914	٠.		0.03724	.0375	0.01874		• •	.0868		•	0.08440	0.05355	
	R490		0.00921	0.03017	0.01090	•	•	0.04728	•		٠.			0.01620	0.01561	0.01938	0.02941		•		0.04748	0.05311	0.03833	0.10888	0.08980	0.01770		0.00728	0.04011	0.02903	0.04680	0.04615	0.08951	0.09116	0.10761			0.04359	0.04587	•	• •		0.10746		•	0.10963 0.08582	0.07868	
	R470	0.01747	N LC	0.02718		0.00880	0.08858	0.04833	0.08131	0.04043	0.08415	0.02423	0.00943	0.01590	0.02014	0.02014	0.03854	0.02541	0.02318	0.04491	0.08207	0.06826	0.04684	0.08481	0.09201	0.01662	0.02752	0.00852	0.03789	0.02940		0.04229	0.06868	0.09741	0.11701	0.03469	•	0.04287	0.0481/	.0278	0.05036		0.11642	0.04977	0.08109		.0879	
	R443	0.02247	.0280	0.02567	0.01283	0.00/89	0.04090	0.08594	0.08581	0.03982	0.06372	0.02502	0.00753	0.013/8	0.02355	0.03534	0.04302	0.02868	0.02518	0.04657	0.08903	0.07427	0.08962	0.07875	0.07827	0.01603	0.01693	0.00/01	0.02542	0.02675	0.03609	0.03697	0.05892	0.10281	0.11414	0.03257	0.11434	0.03708	1 1 1 1	0.02521	0.04541	.0294	.1179	.0473	0.05697	0.06015		
	NAME	WANAPITE	MATAGAMA	MATAGAMA	HOMAS	OTTER	SILVESTE	CHINICOC	DOUGHERT	DOUGHERT	FREDERIC	CENTRE	X	ALINDRIE	×	×	STOUFFER	×	×	CHINICOC	CHINICIL	X	WOLF	DEWDNEY	MARJORIE	LAURA	× >	SOI ACE	MAGGIE	PILGRIM	BLUESUCK	× 2		· ×	JERRY	SMOOTHWA	SUNNYWAT	ZEQUELEM A	MIHELL	WHITEPIN	×	×	TER T	SILVESTE	· ×	LAWLOR	CHINIGUC	
	LAKEID	404 408	404	39A	900	0 6 6	380	350	3 0C	3 08	2 9C	X02	270	X01	248	27A	28C	280	300	378	0 4 6 C 6 6	37D	378	358	35A	33A	32A	23.5	22D	22C	23A	194 198	174	15A	14F	130	134	12A	170	x03	190	200	38D	38C	37E	36D	380	
	088	56 68	29	89 (D (3 6	82	83	64	92	88	67	D 6	S 2	1	72	73	7 ;	9 6	2 2	. 2	6 2	80	81	82	e 6	20 g	8 8	87	88	68	S 5	6 6	6 6	5	50.0	5 G	86	66	18	101	102	103	105	108	107	108	

	R700	000000000000
	R670	0.0024700 0.0025800 0.0018300 0.0013300 0.0033300 0.0011300 0.001300 0.0024300 0.0019900 0.0019900
	R640	0.0084700 0.0044700 0.0087300 0.0071600 0.0071600 0.0089600 0.0089600 0.0089600 0.0089600 0.0089600 0.0089600
	R610	0.0113600 0.0086000 0.0146700 0.0147300 0.0118800 0.0118800 0.0147600 0.0147600 0.0147600 0.0147600 0.0147600 0.0147600
	RSBO	0.0228700 0.0172600 0.0382000 0.0288900 0.0246800 0.0254100 0.0254100 0.0254100 0.0254100 0.0254100
	R550	0.0414200 0.0328600 0.0639200 0.0433200 0.0430400 0.0430400 0.03386000 0.02386000 0.02389000 0.02389000 0.02389000 0.02389000
242	R620	0.0508500 0.0458200 0.0722400 0.0468700 0.0587600 0.0740700 0.0411300 0.024100 0.0532400 0.0532400 0.0532400
	R490	0.064090 0.068180 0.061920 0.061920 0.066590 0.1068320 0.068320 0.02330 0.022491 0.022491
	R470	0.066950 0.076750 0.087580 0.093300 0.116770 0.072190 0.023440 0.050460 0.050460
	R443	0000000000000
	9747	CHINIGUC CHINIGUC CHINIGUC CHINIGUC DOUGHERT FREDERIC CENTRE X STOUFFER X LAUNDRIE X
		1 AKELD 3 5 C 3 4 C 3 3 E 3 3 E 3 3 E 3 3 E 2 9 C 2 7 D 2 2 D
	1	085 109 111 111 112 114 116 116 117 119

APPENDIX C

SUMMARY STATISTICS FOR THE ECO-PHYSICAL POLYGON CLUSTER ANALYSIS

The following table shows the computer mean and standard deviation estimates for the set of Eco-physical polygons within each cluster. Estimates are computed for the total sensitivity rating (STRATRAT), vegetation sensitivity (VEGVAL), bedrock and soil sensitivity (SENSVAL), relief sensitivity (RELVAL), and sulfate deposition sensitivity (SO4VAL).

TABLE C-1
SUMMARY STATISTICS ON EACH CLUSTER MAXIMUM LIKELIHOOD CLUSTER ANALYSIS

	VARIABLE	<u>MEAN</u>	STANDARD DEVIATION
Cluster	=		
	STRATRAT SENSVAL VEGVAL RELVAL SO4VAL	3.13 1.42 0.38 1.30	0.71 0.69 0.12 0.24
Cluster	=1		
	STRATRAT SENSVAL VEGVAL RELVAL SO4VAL	5.66 7.04 4.68 5.57 4.40	0.07 0.66 0.75 0.23 0.33
Cluster	=2		
	STRATRAT SENSVAL VEGVAL RELVAL SO4VAL	6.36 8.05 4.65 5.78 5.82	0.06 0.42 0.66 0.20 0.38
Cluster	=3		
	STRATRAT SENSVAL VEGVAL RELVAL SO4VAL	6.74 8.16 5.83 5.28 6.00	0.09 0.32 0.64 0.22 0.36
Cluster	=4		
	STRATRAT SENSVAL VEGVAL RELVAL SO4VAL	6.02 7.67 4.63 5.25 5.18	0.07 0.52 0.67 0.21 0.42

Cluster=5		
STRATRAT	7.41	0.06
SENSVAL	8.47	0.20
VEGVAL	7.13	0.47
RELVAL	5.62	0.19
SO4VAL	6.58	0.29
Cluster=6		
STRATRAT	3.55	0.29
SENSVAL	3.28	0.92
VEGVAL	2.08	0.14
RELVAL	5.57	0.17
SO4VAL	5.27	0.68
Cluster=7		
STRATRAT	7.07	0.05
SENSVAL	8.50	0.21
VEGVAL	6.37	0.48
RELVAL	5.36	0.22
SO4VAL	6.10	0.32
Cluster=8		
STRATRAT	5.14	0.20
SENSVAL	5.96	0.57
VEGVAL	4.71	0.59
RELVAL	5.46	0.22
SO4VAL	3.97	0.33
Cluster=9		
STRATRAT	7.83	0.20
SENSVAL	8.72	0.22
VEGVAL	8.53	0.49
RELVAL	5.20	0.22
SO4VAL	6.30	0.29
Cluster=10		
STRATRAT	4.34	0.22
SENSVAL	5.22	0.29
VEGVAL	3.82	0.40
RELVAL	5.00	0.22
SO4VAL	3.05	0.21

APPENDIX D WATER CHEMISTRY DATA

- Table D.1. August 1986 WQ Data Collected from the Algoma and Sudbury sites
- Table D.2. May June 1987 WQ Data Collected from selected lakes in the Sudbury site
- Figure D.1 MER and PROBAR Sampling Stations for the Algoma Site
- Figure D.2 MER and PROBAR Sampling Stations for the Sudbury Site

Maps shown in Figures D.1 (80798) and D.2 (80799) were compiled by J. Fortescue and D. Stahl of the Mines and Minerals Division, Ontario Geological Survey, 1987.

		000
		Sulfate mg/i
Table D.1	AUGUST 1986 WATER CHEMISTRY	Al Total Total pH ug/l Alkalinity Inflection

			•	:			1-4-1	7	Sulfate	Dissolved	Conductivity	Total
LAKE_ID	NAME	Iron mg/l	Suspended Solids mg/l		- /Bn	lotal Alkalinity mg/!	Inflection Point	i.	1/6w	Organic		Chiorophyli A ug/l
	1	6	•	;	66	•	1.64		4.68	es.	50	1.90
4 :	ATOMIC	0.22	۰ ۵	100	200	-	0.16		3.86		17	1.20
8	3 (S	2.0		3 5	210	666	0.29		3.45		91	2.20
ر • •	E PACT	130.0	۰ ۵	32	240	666	0.10		3.20		9 ?	01.7
e u	66X	72.0	8	64	250	~	-0.33		20.5	o 4	17	20
	66X	100.0		31	28	N	3.0		9 .		: 1:	1.20
. 0	LITTLE A	41.0		38	180	N .	9 0		9 9	· -	. 19	1.20
? =		17.0	-	2	8	_	5.5			•	<u> </u>	210
V	MALLOT	130.0	-	<u>0</u>	220	2.63	0.67		9 6) -	2 9	1.20
88	88X	22.0	-	e e	130						4	0.60
2	MONTREAL	84.0	-	•	8	֝֟֝֟֝֟֝֟֝ ֚	14.86	•			17	1.90
8	66X	9 0.0	-	7	210	~ •	-C.53			. e	55	2.80
H	66X	160.0	*	D	420	7 ;	? ?	3		9	43	0.0
8	MONTREAL	18 0.	~	₹ ;	3			2 6		4.	16	1.90
98	66X	92.0	,-4 .	7	8	× •		280	•	1.7	10	1.10
8	88X	24.0		5	071	٠,		4 770		6	17	3.60
19	66X	79.0	ο ,	32	2 5	900		200		0.1	18	1.70
5	DYER	170.0	,	•				R 200	•	8.	10	2.20
80	88X	96.0	,	7 5	9 6		9.0	310		9	17	2.10
ຽ	DYER	160.0	, 6	4 .	3 5	4 0		280		9.9	17	5 .00
9	CNION	100.0	-1	;	3))	2.0	140		4.1	91	2.60
빙	66X	0.0		58	3 6	- (770		. w	17	1.70
r.	66X	40.0		24	2	ν.	3.5	1000		10	17	6.40
9	86X	660.0		(B) (3	→ (410		0.	91	2.70
5	86X	640.0		9 6		٠,	Ş	4.850		9.0	17	3.60
IJ	66X	130.0		, c		7.	3 4	90		3.5	16	2.89
3	66X	26.0		30 L	2 6	7 00	5 6	710		(m)	10	1.60
ž	66X	62.0		9 9		Š	6	5.160		6.1	18	8.8
ď	86X	180.0		1			19.5	4.640		19.0	23	3.60
80	66X	360.0		7			0.10	5.200		9.9	18	2.60
2	66X	170.0		4 4	200		0.36	5.660		3.8	16	2.80
2	ALVIN		٧-	, K	38		8.0	6.320		9	16	1.70
) (20 × 00 × 00 × 00 × 00 × 00 × 00 × 00 ×	2.5		23	87		-0.04	5.360		8 . 4	91	9.0
7 2		2 6		9	110		0.11	5.240		m (9 :	8.6
3 6		0.0		9	89		-0.01	6.370		5. 0	9 .	28
5 2	2007	0		Ç	220		8 .9	5.240		39 s	o u	26
3 2	6 6 X	67.0		21	8		-0.19	6.120		- ·	<u>.</u>	3 6
? 4	86X	8.666		38	380		0.41	4. F			2 -	2.70
6	86X	120.0		4	280		3 3 3 4	2.5			8.5	2.60
H	86X	98		e .	88		5.6			4	16	2.70
a	ALVIN	43.0		*	27		5	5.470			12	1.80
빏	66X	24.0		7 6	2 0 0		0.10	6.230		6.2	17	2.10
M T	66X	35.5		, «	950	a	-0.13	5.170			10	2.80
S	66X	96.0		3	150	O O	0.05	5.320		•	16	
#	HAILEY	0.79		9 4	150	•	-0.05	6.240		3.6	17	2.33
ij	3 K			28	310		-0.69	4.850		•	17	
.	70%	2.00		17	180		3.27	6.480		4 .0	19	
ži i	7) (A)			36	380		0.22	6.310		6.2	86 Y	
4 4	8 0 6 ×	32.0		9	160		-0.21	7		 	7.	٠
< Œ	66 X	95.0		32	330	1.14	0.64	4.820	3.72	4.4) (07:100
л С	BIG PIKE	-		38	220		0.49	6.540		•	2	
				I					I			

Table D.1 (Cont.)
AUGUST 1988 WATER CHEMISTRY

Solida mg/l ug/ Alkaiintey Infriection ga/l company control of the company of the	LAKE ID NAME	Iron	Suspended	Ç A	₹	Total	¥	MISIKY			:	
210 4 18 250 0.89 -0.99 6.70 2.22 9.2 </th <th>ı</th> <th>1/04</th> <th>Solids mg/l</th> <th>1/04</th> <th>1/85</th> <th>Alkalinity mg/l</th> <th>Inflection Point</th> <th>Ē</th> <th>- / 6w</th> <th>Organic Carbon</th> <th>Conductivity</th> <th> L</th>	ı	1/04	Solids mg/l	1/04	1/85	Alkalinity mg/l	Inflection Point	Ē	- / 6w	Organic Carbon	Conductivity	 L
10			4	80	260	0.89		4.70	2.32	0	¥.	•
1	BIG PIKE		∾ :	_	170	2.13		6.67	4.04	0.	2 5	2.6
1	BIG PIKE		⊶ ,		160	5 .08		6.64	4.10	0.4	91	
1	P C		┥,		B 1	3.73		6.31	4.62	Ø. 6	18	1.67
100 1	YOURTACK		<i>-</i> -		4	11.43		7.16	4.38	6.1	33	2.10
1	3 C	•	→ «		011	1.34		4 .98	4.18	3.1	16	8.
1	3 C	3 :	ю.		8 6	0.85		4.73	3.24	7.0	17	2.80
100 1 37 20 1.10 0.25 0.54 4.08 2.2 19 220 1 31 200 1.80 0.25 0.58 3.95 3.75 19 220 1 31 200 2.08 0.26 0.58 3.95 3.75 19 220 2 2 6 2 6 2 6 2 4.75 2 3 2 19 220 2 2 6 2 6 2 6 2 4.75 2 3 2 19 220 2 2 2 6 2 2 6 2 4.75 2 3 2 19 220 2 2 2 2 2 2 2 2	8 (A)	;	٠,		, 44 0	8:		6.33	3.31	4.6	16	2.10
100 1 1 1 200 1.80 0.017 6.12 8.86 4.3 117 118 0.028 6.39 8.96 8.39 8.36 8.30 1.80 0.20 6.39 8.36	3 (S	30 9	→ .		28	4.11		0.64	4.68	2.2	100	1.30
1 20 1 26 2.03 0.28 6.39 3.95 3.3 18 1 31 200 2.01 0.28 6.39 3.95 3.3 18 220 2 20 160 2.03 0.45 6.11 4.73 3.5 19 37 2 31 32 3.01 1.21 6.22 4.13 3.5 18 37 2 31 32 3.01 1.21 6.22 4.13 3.5 18 37 2 31 32 3.01 3.24 3.24 3.3 3.5 38 3 3.01 3.24 3.24 3.24 3.3 3.24 39 3 3 3 3 3 3 3 3 3	3 (A)		→ ,		230	1.80		6.12	3.86	4 .	17	1.60
240 1 346 2500 2.01 0.28 6.38 4.58 3.7 19 20 20 20 15 6 99 0.047 5.81 4.27 2.9 10 31 200 1.58 6.31 4.28 5.31 4.27 2.9 110 32 20 150 99 0.046 5.17 6.18 4.58 3.7 19 30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30		-		160	1.98		6.39	3.96	3.3		
24 1 31 200 -1.59 -0.23 5.11 4.73 3.6 1.6 1.6 5.8 1.7 2.2 1.6 1.6 5.8 1.6 1.6 1.6 5.1 4.7 3.6 1.6 1.6 1.6 5.2 1.6 1.6 1.6 1.6 5.8 1.6 1.6 5.8 1.6 1.6 5.8 1.6 1.6 5.6 </td <td>88X</td> <td></td> <td>•••</td> <td></td> <td>250</td> <td>2.01</td> <td></td> <td>5.36</td> <td>4.56</td> <td>, es</td> <td>9 6</td> <td>25.</td>	88X		•••		250	2.01		5.36	4.56	, es	9 6	25.
22 2 20 160 92.28 0.47 6.11 4.27 2.9 178 0.48 6.13 4.27 2.9 178 0.48 6.13 4.27 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 2.9 11 3.9 3.2 1.2 3.2 3.3 1.3 4.0 6.6 6.6 4.9 6.6 6.6 6.7 3.3 1.2 1.2 1.2 1.2 1.2 1.3 4.0 6.6 6.7 1.3 4.0 6.7 3.3 1.3 1.2 1.3 4.0 4.0 6.7 4.0 6.2 4.0 6.2 4.0 6.2 4.0 6.2 4.0 6.2 4.0 6.2 4.0 6.2 4.0 6.2	9 X		-		8	1.69		6.11	4.73	*	2 5	2 5
82 2 2 0 150 999-90 0.45 6.67 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04 6.07 4.04	PATTERSO				9	2.28		5.81	4.27		9 -	2:5
230 2 315 280 1.78 -0.06 6.19 3.56 6.49 3.56 1.78 -0.06 6.19 3.56 6.49 3.56 1.21 3.56 3.21 1.21 3.56 3.57 1.21 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.56 3.57 3.57 3.56 3.57 3.56 3.58 3.56 3.5	86X		8		150			5.67	5		2 5	20.0
37 2 11 38 3.01 1.21 6.22 4.13 3.4 1.6 20 2 10 36 2.46 0.03 6.22 4.13 3.4 1.8 44 1 8 6.2 3.11 1.39 6.18 4.21 3.4 1.8 4.2 3.4 1.8 4.2 3.4 1.8 4.2 4.2 4.4 4.2 4.2 4.2 4.4 4.2 4.2 4.2 4.4 4.2	66X		~		260			10		• •	3 ;	1.43
30 2 14 69 246 0.63 6.66 4.21 3.4 16 170 2 16 23 3.21 1.39 6.18 4.21 1.39 6.18 4.31 1.89 6.18 4.42 2.65 4.46 4.66 4.99 4.99 4.90 4.90 4.90 1.89 6.18 4.90 4.90 1.89 6.18 4.90 4.90 1.89 6.18 4.90 4.90 1.89 6.27 4.90 6.27 4.90 6.27 4.90 6.27 4.90 6.27 4.90 6.27 4.90 6.77 4.92 6.56 5.29 1.90 1.90 6.47 4.92 6.56 5.29 1.90 1.90 6.47 4.92 6.56 5.29 1.90 1.90 6.47 4.92 6.56 5.29 1.90 1.90 6.47 4.92 6.56 5.92 1.90 1.90 1.90 6.47 4.92 6.56 5.92 1	RAND		8		38	3.01		200		• •	D 9	2.60
22 10 31 3.21 1.39 6.18 4.04 3.3 19 44 1 8 6.23 3.11 1.43 6.18 4.04 3.3 19 41 1 8 6.2 3.10 1.33 6.27 4.42 2.0 18 100 2 10 30 8.91 1.09 6.70 4.22 2.0 18 3.0 18 3.1 3.1 3.1 3.2 3.0 3.0 18 3.1 4.2 3.0 4.2 3.0 18 3.1 4.0 6.2 3.0 18 3.1 4.2 3.0	66X		84		89	2.45		. u		7.6	D :	1.60
170 22 15 230 3.11 1.43 5.15 3.24 4.55 4.49 1.24 4.55 4.49 4.55 4.49 4.55 4.49 4.55 4.49 4.55 4.50 4.49 4.55 4.50	BUTTER		~						77.	•	91	2.40
44 1 1 8 6 7 2 1.7 2 1.7 2 1.7 4.4 2 1.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66X		8		230			97.0	5.6	70 (81	2.70
44 1 8 62 3.13 1.39 6.27 4.49 2.9 1.39 6.37 4.69 2.9 1.9 1.39 6.37 4.69 2.9 1.9 1.0 9 7.07 4.42 3.0 1.8 1.9 1.39 6.37 4.69 2.9 1.0 9 7.07 4.42 3.0 1.8 1.8 1.8 6.5 2.9 1.0 1.0 1.0 9 7.07 4.23 6.6 6.6 2.9 1.0 1.0 9 7.0 7.0 7.0 9 1.0 9 9 1.0 9 1.0 9 1.0 9 1.0 1.0 9 1.0 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 1.0 9 9 1.0<	66X				2				17.6	~. **	18	8.8
41 1 8 7 3.13 1.35 6.27 4.42 3.0 18 100 30 8.91 7.09 7.07 4.23 2.9 18 10 30 8.91 7.09 7.07 4.23 2.9 18 12 19 84 8.91 7.09 7.07 4.23 2.9 10 2.96 4.21 2.8 6.07 4.23 1.6 4.21 1.06 6.68 8.02 6.9 1.6 4.21 1.06 6.97 8.13 7.2 1.6 4.21 1.06 6.97 8.13 7.2 1.6 1.6 8.07 8.13 1.2 1.6 1.06 6.07 8.13 4.2 1.6 1.6 8.13 4.2 1.6 1.6 8.13 4.2 1.6 1.6 8.13 4.2 1.6 8.13 4.2 1.6 8.13 4.2 1.6 8.13 4.1 8.1 8.1 8.1 8.1	CARPENTE		• ,-		:	7.6		9.4	4.66	4	21	1.80
100 2 10 30 8-91 7.32 6.37 4.53 5.29 18 1140 3 19 84 8-70 6.83 6.71 4.05 6.2 5.9 18 1140 3 19 84 8-70 6.83 6.71 4.05 6.2 5.9 118 116 12 13 12 14 12 10 0.30 6.47 3.12 6.8 4.3 116 116 12 13 12 12 12 12 12 12 12 12 12 12 12 12 12	CARPENTE		• -		4 5	2.5		17.9	4.42	9.0 0.0	18	1.80
140	- 147777		٠ ،		è 6	57 · 5		6.37	4.53	8.8	18	1.70
170 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WITCHELL WITCHELL		۷.		2	. A.		7.07	4.23	9.9	28	2.60
3/2 1 40 2.10 0.30 6.47 3.86 4.3 16 150 2 39 2.30 2.96 6.68 3.02 6.68 4.3 16 150 2 4.60 2.86 6.07 3.13 7.2 18 16 430 2 1.21 2.0 2.86 6.07 3.13 7.2 18 16 18	# 1 CAELL		ο,		*	02.8		6.71	4.06	6.2	28	
10 2 39 230 5.86 3.02 6.88 3.02 6.8 3.02 6.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.9 3.1 5.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.2 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 <td>a (</td> <td></td> <td>-• (</td> <td></td> <td>140</td> <td>2.10</td> <td></td> <td>6.47</td> <td>3.86</td> <td>₩.₩</td> <td>16</td> <td></td>	a (- • (140	2.10		6.47	3.86	₩.₩	16	
150 1 2 13 210 4.60 2.88 6.07 3.12 8.1 20 340 340 3 1 2 24 90 4.21 2.33 6.94 3.53 7.2 18 340 2.03 1.87 6.70 3.39 4.5 18 19 340 2.03 1.87 6.70 3.39 4.5 18 13.4 20 2.03 1.87 6.70 3.39 4.5 18 13.4 20 2.00 3.79 1.87 6.70 3.39 4.5 18 13.4 20 2.00 3.26 1.28 5.48 3.13 1.3.4 20 2.00 3.14 1.28 6.83 4.74 6.0 3.1 13.4 2.0 2.0 3.1 13.4 2.0 2.0 3.1 13.4 2.0 2.0 3.1 13.4 2.0 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 2.0 3.1 13.4 3.1 13.6	3 (A		~ (230	2.98		6.68	3.02	8.9	16	8
84 1 24 90 4.21 2.31 6.94 3.53 6.1 3.5 6.1 3.6	200		N (210	9 .		6.07	3.12	8.1	50	4
340 2 79 150 3.90 2.03 6.92 3.13 7.2 18 10 2.03 6.92 3.13 7.2 18 10 2.0 2.0 3.90 4.6 18 10 20 20 2.0 3.90 4.6 18 10 <	30 (S		-		8	4.21		6.94	3.53	6.1	9	97.7
430 3 71 100 3.79 1.87 6.70 3.39 4.6 20 260 1 21 290 3.26 1.67 6.68 3.13 13.4 20 77 1 7 7 9.84 7.98 6.83 4.74 5.0 31 32 1 7 9.84 7.98 6.83 4.74 5.0 31 130 2 12 88 6.61 4.71 6.70 4.18 4.6 2.4 130 2 1 6.61 4.71 6.04 4.18 4.6 2.4 130 2 1 6.61 4.71 6.83 4.95 2.4 4.6 2.4 150 2 3.14 6.61 4.71 6.83 4.95 3.0 2.4 4.6 2.4 4.6 2.4 4.6 2.4 4.6 2.4 4.6 2.4 4.6 2.4 4.6 2.	86X		8		160	8. 8.		6.92	3.13	7.2	2 -	9 9
260 1 21 290 3.26 1.67 6.68 3.13 13.4 20 270 1 7 4 9.64 3.04 12.6 20 37 1 7 4 9.64 4.74 6.04 3.9 19 37 1 7 4 7 9.66 4.74 6.0 3.9 19 130 2 1 7 6.61 4.71 6.70 4.18 4.6 2.4 4.6 2.0 3.9 19 19 2.4 6.0 1.2 6.0 3.9 19 19 2.4 6.0 1.2 6.0 3.9 19 19 2.4 6.0 4.16 6.0 2.4 6.0 1.2 6.0 1.2 6.0 1.2 6.0 1.2 6.0 1.2 6.0 1.2 6.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	66X		m		8	3.79		6.70	3.39	4	α -	3 5
270 1 21 280 3.14 1.28 6.44 3.04 12.6 20 37 1 7 74 9.84 7.98 6.83 4.74 5.0 31 130 2 12 81 6.64 4.71 6.70 4.13 4.6 24 130 2 12 81 6.61 4.71 6.70 4.6 24 24 280 2 12 81 6.61 4.71 6.83 4.89 3.0 24 24 24 24 24 24 25 24 25 26 26 24 25 26 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 24 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 </td <td>66X</td> <td></td> <td>-</td> <td></td> <td>28</td> <td>3.26</td> <td></td> <td>6.68</td> <td>3.13</td> <td>13.4</td> <td>2 5</td> <td>36</td>	66X		-		28	3.26		6.68	3.13	13.4	2 5	36
37 1 7 74 9.84 7.98 6.83 4.74 5.0 31 33 1 1 76 3.59 1.79 6.26 4.68 3.9 19 130 3 12 91 6.51 4.71 6.06 4.6 24 4.6 24 4.6 24 4.6 24 4.6 6.06 4.6 6.06 3.9 2.4 4.6 6.06 4.6 2.4 4.6 2.4 4.6 2.4 4.6 2.4 4.6 6.06 3.9 2.2 2.1 6.06 2.3 2.7 1.0 4.6 2.3 2.7 1.0 6.9 2.3	00 X		-		280	3.14		5.44	70	12.	3 6	2.4
32 1 75 3.59 1.79 6.26 4.68 3.9 19 130 3 12 88 6.54 4.71 6.70 4.18 4.6 24 6 1 6 6.5 4.71 6.70 4.16 4.6 24 280 2 1 6.64 4.71 6.83 4.0 23 24 350 2 1 6.83 4.16 1.0 23 30 23 30 23 30 23 30 23 30 23 30 23 30 23 30 23 30 23 30 23 33	66X		-		7.	9.84		6.83	4.74		3 5	• •
130 2 12 88 6.54 4.71 6.70 4.13 4.6 24 130 3 12 91 6.51 4.67 6.66 4.16 4.6 24 280 2 12 6.61 4.67 6.66 4.16 4.6 24 280 2 14 150 3.97 2.17 5.96 6.9 23 350 2 14 160 3.97 2.17 6.96 4.16 17 120 1 18 19 2.6 4.71 6.34 3.10 6.9 2.3 69 1 6.14 4.27 6.41 3.88 6.4 23 81 1 2 4.9 2.72 0.87 6.41 3.88 6.6 1.8 13 2 4.9 5.72 0.87 6.73 3.88 6.6 1.8 1.8 110 2 2.72 0.87	66X		-		76	3.59		6.25	4.68	o m	; =	2.50
130 3 12 91 6.61 4.67 6.66 4.16 4.6 24 24 30 350 2 31 210 3.87 2.17 6.83 4.93 3.0 23 3.0 23 3.0 3.0 3.87 2.17 6.83 2.77 10.6 119 23 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.	FULLER	130	~		88	6.54		6.70	4.13			•
280 2 31 210 3.87 2.17 5.83 2.77 10.5 19 23 3.0 23 3.0 23 3.0 23 3.0 23 3.0 23 3.0 23 3.0 2.0 2 14 150 3.87 2.17 5.98 2.95 5.9 17 10.5 19 17 120 1 18 110 6.54 4.71 6.34 3.10 6.9 2.3 23 3.1 24 190 2.72 0.87 5.73 6.41 3.88 6.4 23 3.1 2.2 3 3.1 2.4 190 2.72 0.87 5.73 6.73 4.89 6.4 23 3.1 2.2 3 110 6.99 8.10 6.79 4.90 3.1 2.2 3 110 2.2 3.1 2.2 3 110 2.2 3.1 2.2 3 110 2.2 3.1 2.2 3 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	FULLER	130	m		16	6.51		99.9	4.16	. 4	3 6	2.5
280 2 31 210 3.87 2.17 6.98 2.77 10.6 15 350 2 14 150 3.97 2.17 6.98 2.95 6.9 17 120 1 16 6.64 4.71 6.34 3.10 6.9 23	QUINTET	•			29	9 .08		6.83	4.93) C	7 6	9.5
350 2 14 150 3.97 2.17 6.98 2.95 6.9 17 4.71 6.34 3.10 6.9 17 4.21 6.34 3.10 6.9 23 24 23 24 23 24 <th< td=""><td>ΤΑΥ</td><td>280</td><td>8</td><td></td><td>210</td><td>3.87</td><td></td><td>5.83</td><td>2.77</td><td>2 0</td><td>3 -</td><td>2 9</td></th<>	ΤΑΥ	280	8		210	3.87		5.83	2.77	2 0	3 -	2 9
120 1 18 110 6.64 4.71 6.34 3.10 6.9 23 23 37 1 8 79 9.28 7.46 7.10 4.01 9.1 29 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	86X		~		160	3.97		86.9	2.96	a	: -	•
37 1 8 79 9.28 7.46 7.10 4.01 9.1 29	NORTH MC		-		110	6.64		6.34	3.10	•		9 6
69 1 6 68 6.14 4.27 6.41 3.88 6.4 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	NORTH INC	37			18	9.28		7.10	10.4	• ~	2 6	8.8
83 1 24 190 2.72 0.87 6.73 3.88 6.6 18 18 2 4 18 1 18 2 4 18 6.10 9.92 8.10 6.92 4.13 6.1 29 18 19 19 19 19 19 19 19 19 19 19 19 19 19	66X	() ()	-		28	6.14		8.41	8		P 6	3.6
41 1 6 100 9.92 8.10 6.92 4.13 5.1 29 11 13 12 49 5.09 3.16 6.79 4.90 3.1 23 11 23 11 10 2 49 6.10 4.17 6.69 4.79 3.3 26 11 10 2 16 100 7.61 5.84 6.69 3.78 7.6 26 11 10 2 16 120 6.18 4.33 6.27 2.91 4.9 2.2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	88X	83			8	2.72		5.73	8		3 5	9.6
8 1 2 49 6.09 3.16 6.79 4.90 3.1 23 11 10 10 10 10 10 10 10 10 10 10 10 10	66X	41			8	9.82		00	4 13) -	9 6	2.20
13 1 9 64 6.10 4.17 6.69 4.79 3.3 26 11 10 2 16 100 7.61 6.84 6.69 3.78 7.6 26 3 16 100 7.61 6.84 6.69 3.78 7.6 26 3 16 120 6.18 4.33 6.27 2.91 4.9 22 2 2 6 3 3 6 3 1 1.36 6.84 3.39 6.9 36 3 6 3 1 1.36 6.84 3.39 6.9 36 3 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	QUINTET	60	-		9	2 .08		8.79	08		R 60	26.
110 2 15 100 7.61 5.84 6.69 3.78 7.6 26 3 3 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66X	13	-		9	6.10		8.69	4 70		3 4	20.
150 2 16 120 6.18 4.33 6.27 2.91 4.9 22 2 2 2 6 6 13.24 11.35 6.84 3.39 5.9 36 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	86X		~		8	7.61		8	3 78		9 8	
69 1 6 65 13.24 11.35 6.84 3.39 6.9 35 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	McCOLLOU		2		120	- C				0.	97	3.80
63 2 13 53 10.46 8.68 7.02 4.14 4.8 31 2 39 2 6 71 11.15 9.42 7.20 4.31 4.5 33 33 100 1 18 180 4.48 2.66 6.33 3.61 3.3	86X				45	9 6	-	77.	2.81	.	22	2.80
23 2 13 53 10.46 8.68 7.02 4.14 4.8 31 2 39 2 6 71 11.16 9.42 7.20 4.31 4.5 33 3 100 1 18 180 4.48 2.66 6.34 3.61 A.3			→ c		8 6	77 (48.	3.39	œ. œ.	36	3.20
39 2 6 71 11.16 9.42 7.20 4.31 4.5 33 3 100 1 18 180 4.48 2.86 6.34 3.61 A.2	2 X		7 (0		7.02	4.14	4.8	31	2.70
100 1 18 180 4.48 2.66 6.34 3.61 8.2	X To		8		7.1	~		7.20	4.31	4		2 6
	66X	_	-		180	4.48		34	3.A1		? .	3 6

	Total Chlorophyll ug/l	4.20	8.5	- · ·	2.4	2.30	F 51	1.80	3.40	2.70	2.80	09.60 09.60	9 6	9 0	1.20	4.20	3.70	4.11	3.88	3.25	8.8	200	9 -							6.30		1.80		08.0	1.20	3.60	09.9	4.40	1.60	1.40		-	06.666	-	06.666		06.668	999.90
	Conductivity	19.0	20.0	23.0	35.0	33.0	32.0	41.0	25.0	31.0	31.0	17.0	9,0	200	31.0	39.0	16.0	31.0	31.0	32.0	31.0	20.0	2.0	24.0	31.0	20.0	21.0	21.0	73.0	28.0	33.0	37.0	22.0	9.0	33.0	33.0	41.0	40.0	40.0	G)	0.4	8.00	3. C		0.00	8.88	8.88	8.88
	Dissolved Organic Carbon	0.0	4.1	9.0	9 0	7.7	8	0.6	3.6	4.1	4.1	4 e			13.0	•	8.1	2.6	2.6	9.0	m -				5 .0	9.0	0.4	 	1.4	. O.	0. 8		.		7.6	4.	4.6	3.6	7.4	۲.0	*			A 000				888.9
	Sulfate mg/l	3.71	. A	10.4		3.97	10	.38	4.01	4.38	4.4	3.77	200		2.38	3.69	2.60	6 .0	. o	9.0	b.17	. t	11.4	4.42	6.07	7.80	4.43	4. 4. 60 A.	7.00	8	6.48	6.65	4.50		4.91	4.53	6.21	5.17	3.68	2.60	3.78		96.60	•				999.90
STRY	Ŧ	5.70	9.90	9 0	8.8	9	6	7.43	6.50	7.14	7.13	18.97	3.5	8	6.39	9.08	6.51	7.21	7.24	7.19	9 .	7 . 7		9.00	7.20	6.19	9.46	2 0		96.0	7.28	7.38		0.00	7.02	7.03	2.08	7.35	•	•	•		06.66	0000			•	988.90
Table D.1 (Cont.)	Total Inflection Point	1.33	2.08	3.1/	70.75	00.0	28	14.68	4.83	8 .08	6.03	0.0 40.0	20.0	. Y	9.40	11.03	0	7.74	7.36	7.73	4. ¢		8	4.62	7.30	1.39	2.48	7.8. 7.6.	14.38	6.19	9.10	9.68	2.69	<u> </u>	9.14	9.11	~	a	13.16	10.61	16.07	08.888	06.666		06.00			୦୫ ଜନ୍ଦ
Table D	Total Alkalinity mg/l	3.23	3.87	20.4	11.32	10.87	11.82	16.37	6.62	88.6	9.76	2.69	7.07		10.30	12.92	2.88	9.61	9.23	9.66	9.32	4.01	7.01	44.0	9.22	3.28	4.38	4.81	96.4	80.8	w	11.39	4.51	8 8	9 6	10.87	•	3		,	•			200	06.666		•	
	1/8n	230.0																																		80			94.0	97.0	9 9 9	6.666	6.666	n 0	0000	6.666	6.666	0 000
	- 1/0 - 1/0 - 1/0	24.0	7.0	6	o (9 0	9 0	9 0	7.0	0.4	4.0	12.0		9 -	2.6	11.0	27.0	0.0	3.0	7	0.4	.	9.0	9 0	4	9	11.0	0.0	9	2 6	0.9	3.0	0.9	12.0) e	0.6	8	16.0	12.0	0.0	4.0			3.00	A 0		6	-1
	Solids Solids	1.0	1.0	0.1	0.0	9.0	9.0) C	0	1.0	1.0	1.0	0.1		-	0	0.0	0,1	1.0	1.0	1.0			9.0	0.2	1.0	1.0	0.0	0.1) C	0.1	1.0	1.0	0.0	9.0		0.6	3.0	1.0	1.0	1.0	6.666	6.66	B. B	3 O O O O O O O O O O O O O O O O O O O	3 O O O	6.666	
	Iron mg/!							9																9 5	13.0	16.0	37.0	28.0	9.0	3 8	14.0	10.0	68.0	30.0	7 L	2 5	0.0	0.00	120.0	150.0	67.0	6.666			0.000 0.000		6.666	
	NAME	66X	88X	CHAIN	66X	8 6 8 8	3 C	200 X	You	9 G	66X	66X	GRIFFIN	GRIFFIN	LOWER GR	n 0	n 0	00	ADELAIDE	ADELAIDE	66X	88X	LOWER GR	o (0 (0 ()	ADEI ATDE	66X	86X	BONE	88X	on (0 (3) (2)	ITTLE		86X	66X	3 C	DKEW TTT 6		TTITEY		66X	86X	66X	66X	86X	66X	5 6 5 X	66X	; ·
	LAKE_ID	X	2	¥	2	9 :	֓֞֜֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֜֜֝֓֡֓֡֓֡֓֡	9 5	<u> </u>	- -	3	ij	3	š :	<u>.</u>	3 3	55	£ 9	¥	9	및	¥	2	Ž :	0 L	2	¥	¥	2	₹ :		ž	볼	5	90	38	3 6	d u	S	3	IO	a	501	202	S03	\$05 \$0.	3 C	- ,

CRIGINAL PAGE IS OF POOR QUALITY Table D.1 (Cont.)
AUGUST 1986 WATER CHEMISTRY

28 P. L. S. S. S. L. S.		-/Bn	Alkalinity mo/1	Inflection Point		- / Bu	Organic		Chlorophy!!	,
			- /3							≺
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6.666	989.80	06.666	989.80					
		888	06.666	08.80	08.666	989.80	6.666	8.666	6.686	
		A 0		30.00	08.88	-	-			
				2000	200	-				
	(a) (a)	0 0 0 0	0			-	-			
	ā	6.666	06.666	06.98	08.0	-	_			
		6.666	06.666	06.666	06.666	_	_			
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Ö	8.666	06.666	06.666	06.666		_			
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	66	8.686	08.666	06.666	06.666					
4.00.00.00.00.00.00.00.00.00.00.00.00.00	6	8.686	06.666	06.666	600	000				
	66	8.666	06.666	06.666	989.80	000				
4.0.0000000000000000000000000000000000	ä	8.88	06.888	06.666	08.666	06.000	-			
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Ğ	0.666	06.666		000					
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Ğ	6.666	08.88							
20000000000000000000000000000000000000	ă	000	9						8.666	
2000 2000 2000 2000 2000 2000 2000 200	ä	0	000						8.666	
2000 2000 2000 2000 2000 2000 2000 200	ä	0 0 0	8						8.666	
1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ŏ	0			20.00	08.80			8.66	
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ă	. 000				200			8.886	
170.0 170.0 180.0	å	. 000					D (0)		8.88	
800 170 170 170 180 180 180 180 180 180 180 180 180 18	ă					08.80		6.66	6.666	
170.0 170.0 170.0 180.0 180.0 180.0	å	. 0				300	0.00	0.00	6.66	
0.0000000000000000000000000000000000000	*	130.0			28.0		0. r	6.00	8.88	
0.000	7	000	22.18					16.0	7. 8.	
0.00	6	0.000	17.44	16.31		7) c		0.19	2.8	
0.09	66	686	18.07	16.35	**	0.10 4 77	» •	0.0	2.5	
0.0	366	8.666	13.44	11.62	06	1.17	•) ()	O. 6	
	566	8.666	19.73	18.02	7.41		•	2.6	OD (
110.0	566	8.88	23.26	21.49	7.34	100	· •	0.6	4 1	
84.0		94.0	17.69	15.86	7.37	4.78		0.0	2.0	
120.0	566	8.88	16.66	14.96	7.30	20	. «	2.0	•	
4CESS 23.0 1	566	8.666	33.62	31.92	7.69	11.70		204.0		
66.0	2	260.0	0.62	-1.10	4.66	• •		21.0	7.0	
EN 67.0 1	78	290.0	0.62	-1.10	4.65	9.64	2.5	0.6		
14.0	GR	4 0.0	2.04	0.83	6.19	9.73	2.3	29.0	• • •	
UF 28.0 1	12	31.0	6.03	4.19	6.83	10.60	2.4	37.0	7	
	8	320.0	0. 8 6	8 .	4.73	9.40	4.4	32.0		
23.0	180	220.0	1.26	•	4.93	9.32	1.1	29.0	0.1	
60.0		430.0	0.78		4.70	8 0. 8	0.3	31.0	. C	
110.0	10	470.0	8.		4.40	9.07	6.2	36.0	a -	
0.	17	28.0	3.20		8.48	10.80	1.7	33.0	8	
32.0		280.0	0.71		4.68	10.80	•.0	36.0	7.0	
NYWAI 26.0	9	260.0	0.71		4.69	10.80	0.2	36.0		
42.0	130	230.0	0.40	-1.32	4.62	10.70	9.0	36.0	2.0	
IN 36.0	110	160.0	1.35		4.98	9.32	1.6	30.0	6	
27.0	88	120.0	06.666		5.47	9.84	1.9	28.0	2 0	
17.0	18	32.0	2.43		6.17	10.90	1.4	32.0	. u	
0	2	140.0	1.98		99.9	9.8	2.4	28.0	9 0	
54.0	69	210.0	0.89	-0.94	4.76	9.29	3.1	30.0	• - • -	
.	32	100.0	1.61		5.16	4	2.8	31.0	•	
32.0	8	160.0	1.46		6.01	7	1.6	31.0	, u	
56.0	72	130.0	1.24		90.4	8.12				

Table D.1 (Cont.)

Table D.1 (Cont.)
AUGUST 1986 WATER CHEMISTRY

Total Chlorophyll / ug/l	0.0	1.6	1.4	1.3	6 .4	9 · e		8 0 (7.7	- (9 0	- m	. 0	1.2	1.2	0.5	o.3	a. 4	1.3	3.1	3 (m (2.7	8.0	0.7	0.3	e . o	m 6	9 6	200	9 6	9	0.3	→. 0	₹ .0	† .0	0.3	0.7	0.3	e.0	9 .0	2.2	0.9		!
Conductivity	31	40	28	8	36	501	E 6	200	3 6	2 6	2 5	3 6	4.0	30	7	34	38	7	43	37	ဝင္က	92	;	* (2 2	37	36	. 60	33	42	7	7	30 c	2 6	7 7	38	80 60	4	4 3	9	38	4 3	42	æ .	5 (Q !	4	7 7	7 4	
Dissolved Organic Carbon	10.5	7.0	9.0	1.7	4 .	æ (3 (. ·	9 4		? .	• «	. 6	0.	0.0	5 .0	9 .9	8 .0	8 .0	0. 0.	9.0	2.5	7.7			8.0	89.69	3.2	8 .0	2.4	e. 0	e. 0	• •	• ·	0.0	0.3	0.1	0.1	0.3	9.0	9.0	0.5	+	o.9	0.5	a (N F	- °	1.1	
Sulfate mg/l	7.43	9.18	9.10	8:13	10.70	20.50	27.0			7.70		10.	12.60	6.83	12.90	8.42	11.30	13.40	13.60	10.00	10.20	8.6		30.30	2	12.50	11.60	10.00	10.50	14.20	12.60	12.60	8.5	25	11.60	12.00	10.20	10.50	12.00	12.60	12.00	10.30	10.40	13.10	13.00	30	8.5	12.80	11.60	
Ŧ	6.07	4.	6.82	8	4.77	70.7			9.6	20.4	100	5.67	6.43	4.43	4.76	7.03	4.96	4.61	4.03	4.38	9.03	9 .	9.7	9	9	6.12	6.98	4.91	4.98	6.24	7.2	* .0			4.4	4.85	4.4	4.40	4.41	4.73	4.84	. 30	4.28	4.69	5:	10.	97.4	90.4	4.29	
Total Inflaction Point		18.48	0.43	0.44	88.0		9.7	9.5	24.75	17.30	9.0	0.12	3.37	-2.00	-0.83	6.26	0.47	-1.29	-1.27	-2.01	-0.32	8 G	57.0		79	-0.28	1.8	-0.49	-0.41	0.73	-1.61	-1.48	70.07		-1.91	-0.05	-2.08	-2.14	-2.04	0.83	-0.71	-2.74	-2.84	-1.30	07.1-	-1.04	3:	97.7-	-2.79	
Total Alkalinity mg/l	4.65	20.26	2.20	2.22	0.87	20.83	70.0	7.70	10.1		3:	70.1	6.18	8	0.84	7.09	1.38	0. 7	0.65	0.0	08.88	2.78	8 .			1.40	2.80	1.27	1.29	2.46	0.17	0.22	3 8	8	88	1.08	8.0	8	°.8	0.81	06.666	8.0	8.0	0.42	1.0	3 0.0	3 6		8.0	
- VB	140	ි	62	21	210	2 :	• 6		2 6	9 6		=	8	8	8	7	8	58 0	250	260	130	95	2 9	? ;	2.	170	8	28	180	1	100	4 ,	9 6	8	360	180	340	440	760	240	140	2 00	470	8	200	025	2 6	3 8	32	
Mn mg/i	10	35	24	27	9	9 6		6 2	1 6	9 6	ָרָ בְּי	37	13	Ç	180	_	78	220	220	2	9	30 (2 5	` «	9 6	1	38	8	160	58	9	3			8	160	110	130	160	150	160	220	73	140	2 .); ;	70,	22	74	
Suspended Solids mg/l	4	8	~	-	۰.	٠,	→ Ç	3 -	→ 6	9 6	٠.	4	۰ ۵	, es	-		~	~	,	⊶,	- (η,	→ ,	- •	-, ۱	•	-		-	,	~ .	⊶,		•		~	-	7	-	~	-	~	⊶ ,	, r	٠,	٠,	- 4 -	٠,	٠,	
Iron mg/¦	340	160	္က	=	2;	2 6	3 6	3 5	3 5	9 6		3 2	170	280	24	ខ្ព	140	8	7	9 1	9 9	3	3:	: 2	3 5	2 2	16	800	29	1	61	4 6	9 5	. 4	8	31	38	34	73	e 19	31	63	220	42	7 9	2 6	051	• •	110	
NAME	LIMIT	HAZEL	MODDING	88 X	0 (0 X X	A COLOR		YOULE	CTIBECTA	NO SECON	CTO IEEE	86X	66X	86X	FREDERIC	66X	88X	DOUGHERT	DOUGHERT	66X	3 C	98X	ADELAIDE	e o	86 X	CHINIGUC	86X	66X	88X	LAURA	CHINIGOC	CHINICAL	TOTAL COX	0 0 X	66 X	CHINIGUC	66X	88X	86X	DEWONEY	CHINICOC	68 X	66X	FRANKS	7071117	LAMLUK	20 C	WULF CTI VECTE	X89	
LAKE_ID	268	28 C	260	28E	28F	< A	9/2	7 6	700	7 0 0 0 0	200	280 280	29A	298	28C	290	3 0 A	308	300	000	10 C	818 818	910) (C	324	32B	32C	32D	32E	3 3A	338) ()	330	3 4 K	348	34C	340	34E	36A	368	360	350	36A	368	200	300	< n	0/0	370 370	

ont.)
ပ္
0.1
Table

Total Chlorophyll	- (2)	0.2	0.0		რ. ი									0 0																																
Conductivity		38.0	35.0	42.0	9.5	2.0	9.6	2.0	2.7	37.0	0.08	64.0	0.89	8.88	8.68))))		. 000	0.000	8.88	8.88	8.666	8.88	888.0	A 000	0 00	8.866	8.666	8.88	8.668	8.000 0.000	0.000	0.000	8.666	8.666	8.88	0 0 0 0 0 0	2000		0.000		0.	٥	29.0	37.0 37.0	29.0 37.0 0.00
Dissolved Organic Carbon		•	•	•	•		•		•			14	4.1	6 666	9.00	A 0	000	9 9	888	8.88	8.88	6.686	8.686	0.00	000	000	8.88	8.88	8.88	6.000	0.00 0.00 0.00 0.00	0 000	8.88	6.888	8.88											0 6 60 0 4 4
Sulfate mg/l		13.10	10.40	12.60	15.20	11.50	11.80	11.8	12.40	10.60	11.10	13.90	13.60	08.80			9	06.666	08.88	888.80	989.80	989.80	06.666			06.666	988.80	989.80	989.80	08.888	8.00		989.80		989.80			06.00	• .	06.66		•	•			10.90 8.87 8.23
CHEMISTRY PH ion		6.170	•	•	•	•			•	•	•	•		008.888		000	006	006.666	989.800	989.900	989.900	988.800	999.900	988	006		999.900		•	•				•	•	006.000				989.900		•	•			6.200 7.630 6.720
1986 WATER CHEM Total ity Inflection Point		-0.25	-1.39	-1.22	-2.46	3.14	-0.23	1.66	-1.23	0.85	-0.72	7.51	16.33	08.80		06.00				08.88			•				989.80		988.80	•	• .			989.80	989.80					988.80	0.39	0.18			27.74	27.74 1.68
AUGUST 1986 Total Aikalinity mg/i		1.63	08.888		88	4.95	08.666	3.48	0.61	0.89	1.08	9.42	17.20	06.686		08.088	08.666	08.88	989.80	989.80	989.80	08.88	08.00	3.0	08.686	986.80	989.80	888.80	989.90	20.00			08.868						06.666				•		ia	29.58 3.51
-/65		150.0	180.0	20.0	520.0	34.0	120.0	26.0	270.0	250.0	180.0	16.0	13.0	9.00		0.000	8.666	8.88	8.666	999.9	8.666	8.88	9.00		8.000	8.88	8.88	8.88	0.000	3 C		8.666	6.666	8.88	0.00 0.00 0.00		0.000	8.88	8.88	8.886	10.0	0.09	Ç	2	10.0	10.01
Mo mg/l			9.0			49.0		62.0	20.0		30.0		o.	œ (• •	a	a	0	۹	œ	œ	.	.	» a	0		•	a .	<u>م</u> د	, (0	•	œ.	9.0	» o	. 0	9	•	9	0	0	•		90	,
Suspended Solids mg/l	;	1.0		•	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	B 0		0.00	6.666	8.886	8.88	8.88	8.888	8.00 6.00 6.00 6.00	» o		6.666	8.666	8.666	0.00	0.00 0.00 0.00	n 0		6.668	8.886	8.88	3. CO	. 000	0.000	8.666	888	8.666	1.0	1.0	1.0		1.0	2.0
Iron mg/l		9; 0.0	• • • • • • • • • • • • • • • • • • •	2.0	64.0	92.0	130.0	0.88	76.0	260.0	6	24 .0	43.0	300	. 000	6.66	888.8	8.666	8.666	8.88	6.666	G. G	200	0.000	6.66	8.66	6.666	00.00	Ø.000	n 0	6.66	6.666	8.666	6.66	3.00	000	6.666	8.666	6.666	6.666	0.8	68.0	ָרָ כְּי		31.0	31.0
NAME		66X					MATAGAMA				VEAMA													e o o							n 00											ΙE				및
LAKE_ID		37E	¥ 0 0	0 K	380	38E	38A	398	38C	390	4 0 4	40B	9	127	1 6	103	ğ	T06	108	T07	108	601	2 :	111 112	T13	T14	T16	116	117 118	9 5	120	T21	T22	T23	124	128	127	T28	T29							2 8

Table D.2
SPRING 1987 WATER CHEMISTRY

	-																															
	Total Chlorophyll ug/l	:		9 1	0.00	1.24	1.50	9.6	8.6	8.5	35	9 6		3 6			0.30	0.70	0.60	0,50	0.10	0.82	96.0	0.33	0.20	11.0			3 5		0.37	
	Dissolved Conductivity Organic Carbon	ı	•	•	•	. 6	24.0	7.5	9.0	9.0	37.0		35.0	43.0	33.0	32.0	40.0	28.6	30.0	33.0	37.0	•	•	•		•			•	•		
	Dissolved Organic Carbon	0.4	0.7	œ .) ^		50	0.5	1 0	2.2	9.0	1.9	1.4	9.0	2.5	1.7	1.3	0.5	5.0	3.7	9.0	9 .0	• •	2.5	1.3	0.3	1.7	1.2	
	Turbidity Formazin Units	1.21	0.28	0.46	0.67	1.15	98.0	0.64	0.33	0.66	0.24	0.83	0.72	0.37	0.45	0.72	0.38	0.65	0.63	0.68	0.37	1.58	0.44	0.19	0.18	0.31	0.59	0.28	0.20	0.31	0.32	
AISTRY	Sulfate mg/l	12.8	12.1	10.4	9	8	2.6	11.6	11.3	9.1	10.0	89. Os	9.5	13.6	10.3	10.7	13.0	 	a	10.5	11.7	6.7	3. . .	D (16.0	16.1	16.6	89. 80.	4.0	7.8	8.	
HER CHEN	Hd c	4.890	4.810	6.430	6.320	6.113	6.301	4.655	4.780	6.100	4.734	6.036	6.601	4.627	6.350	5.298	4.738	6.144	90.9	6.156	4./36	•	•		•	•	•	•		•	•	
STAING 1987 WATER CHEMISTRY	Total Inflection Point	0.10	0.10	1.31	1.03	0.83	1.34	-1.10	0.73	-0.18	-0.88	0.78	2.95	-1.10	1.40	-0.05	9.0	8 .7	-0.23	0.61	1	•	•	•			•	•		•	•	
NINI	Total Alkalinity mg/l	1.3	1.2	o.	8.8	•		•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	
	A. 1/8u	220	280	210	34	220	36	260	280	120	8	3	30	9	56	9	3 8	9 (2;	•		7 4	9 6			2 8	77	9 (2	9	80	
	E E	0.250	0.180	0.048	0.022	0.019	0.037	0.220	0.160	0.088	0.240	0.018	0.039	0.300	0.037	0.084	3,5			326			140				410.0	0.016	0.250 2	0.093	0.076 1	
	Iron mg/l	0.033	0.020	0.082	0.036	0.027	0.041	0.038	0.043	0.089	0.032	80	0.110	0.100	0.028	9.5	3 6					888	200				0.010	36	0.024		0.0	
	DATE	5/6/87	18/9/9	2/9/8/	6/6/87	6/12/87	6/12/87	5/12/87	6/12/87	5/12/87	5/12/87	6/12/87	6/12/87	6/10/87	18/01/9	6/10/8/	0/10/8/	0/10/01/	0/10/0/	79/01/9	A/30/87	8/30/87	6/30/87	6/30/87		10/06/	18/05/9		19/05/9		0 /8/08/9	
	NAME	DOUGHERT		CENIKE	WHITEPIN	WHITEPIN	CENTRE	DOUGHERT	WOLF	WHITEPIN	SUNNYWAI	AWHI DOWN	MAGGIE	DOUGHERT	CENTRE VO	MOK HE TO	WULT	MITTERIA	SMOOTHWA	SINNYWAT	CENTRE	LAUNDRIE	CHINIGHT	DOUGHERT	WOI F	MUTTERIN	ALL TOUR	PART DOMS	MINTER	MITIETIN	NUKIH 10	
	LAKE_ID	300	9 0	707	goX	130	X02	၁ (၈	378	XO3	134 11.						3.0	200	14H	134	X02				37B	2 6			()	200	100	

•

PROBAR Data Collection Station

→ MER Data Collection Station

FOLDOUT FRAME

ORIGINAL PAGE IS OF POOR QUALITY

	•	
	v.	
	•	

Figure D.1. MER and PROBAR Sampling Stations for the Algoma Site

D-11

OF POOR QUALITY

Location Map

- PROBAR Data Collection Station
- → MER Data Collection Station

•			

Figure D.2. MER and PROBAR Sampling Stations for the Sudbury Site

APPENDIX E TRANSMISSOMETER DATA DERIVED TRANSMISSION AND ATTENUATION COEFFICIENTS

METER	DATA	
TRANSMISSOMETER	SPRING	2 N
	~	DEPTH
SEA TECH	SUMMER	

	SEA TECH TRAF SUMMER AND S	TRANSMISSONETER ND SPRING DATA PTH = 2M	
LAKE	DATE	TRANSMITTED LIGHT	ATTENUATION COEFFICIENT
ASPREY	/58/	.76193	2
~	/19/8	.84419	
BLUE CHAULK	/26/	.8	Š
CENTRE	8/22/86	ο,	0.77400
CENTRE	200		3
CENTRE	10	8561	100.
CENTRE	9	. 813	823
CLEAR	/39/	.8132	82
CRAYFISH	2	77073	.0416
DOUGHERTY) (16)		46
DOUGHERTY	9 5	0.807250	0.38935
DOUGHERTY	ខ្ល		3 4
DOUGHERTY	30,		0.50641
EAGLE	8/24/86	.77686	1.01000
- FR000	29/8	.79183	0.93360
LANG	6/29/87	.81614	0.81264
LONG	36	- C	0.83376
	6/12/87	8	0.85231
NORTH YORSTON	6/10/87	.8592	0.60668
NORTH YORSTON	7/01/87	.8526	0.63797
RED CHAULK	8/25/86	0.801563	0.88477
10	6/12/87		0.30867
SMOOTHWATER	6/10/87		0.58738
SMOOTHWATER	5	8787	0.51714
SPANISH R	25		
SUNNYWATER	5/12/85 5/12/87		4427
SUNNYWATER	음		
SUNNYWATER	ខ		
WABAGISHIK	8	0.631323	296
WHITEPINE 1	3 5	•	•
WHITEPINE 1	7/01/87		
WHITEPINE_2	7	.8301	
WHITEPINE 2	9	.7	
WHITEPINE 2	6/12/87	.768	. 103
WHITEPINE 2	25	86286	.636
, L	` `	9 4	
WOLF	/11/8	.88342	496
WOLF	8/9/	.9115	370
#0.F	/12/	.863	.6866
WOLF	6/10/8/ 6/30/87	0.869629	0.55876
		3	3535.

APPENDIX F MER-SUBSURFACE SPECTRAL RADIOMETER MULTITEMPORAL LAKE REFLECTANCES

Figure F.1	Smoothwater Lake
Figure F.2	Whitepine #1 Lake
Figure F.3	Sunnywater Lake
Figure F.4	Wolf Lake
Figure F.5	North Yorkston Lake
Figure F.6	Whitepine #2 Lake
Figure F.7	Dougherty Lake
Figure F.8	Centre Lake

Figure F.1 Smoothwater Lake

= 6/10/87 * = 7/01/87

F-2

 Smoothwater Lake Mer Data at 2 Meters

 Multitemporal
 Mer Reflectance

 Center
 Reflectance

 Wavelength
 6/10/87

 410
 0.0084
 0.0142

 441
 0.0116
 0.0210

 488
 0.0172
 0.0303

 520
 0.0173
 0.0277

 540
 0.0173
 0.0289

 560
 0.0173
 0.0233

 589
 0.0161
 0.0023

 625
 0.0030
 0.0050

 658
 0.0021
 0.0029

 671
 0.0017
 0.0029

 634
 0.0016
 0.0029

Figure F.2 Whitepine #1 Lake

4 = 5/12/87■ = 6/10/874 = 7/01/87

Whitepine #1 Lake Mer Data at 2 Meters
Multitemporal Data
Mer Reflectance

Center Wavelength	Reflectance 5/12/87	Reflectance 8/10/87	Reflectance 7/01/87
410	•	0.0086	0.0398
4	0.0050	0.0168	0.0842
488	0.0070	0.0314	0.1132
6 20	0.0097	0.0394	0.1307
640	0.0114	0.0440	0.1368
2 80	0.0135	0.0460	0.1387
689	0.0133	0.0410	0.1143
625	0.0084	0.0170	0.0513
6 58	0.0072	0.0132	0.0428
671	0.0057	0.0116	0.0382
9 8 9	0.0058	0.0097	0.0316

Figure F.3 Sunnywater Lake

5/12/876/10/877/01/878/13/86

Sunnywater Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

Reflectance 8/13/88	0.067	0.085	0.049	0.027	0.021	0.014	0.008	0.002	0.001	0.001	0.001
Reflectance 7/01/87	0.1033	0.0917	0.0837	0.0346	0.0279	0.0196	0.0120	0.0040	0.0030	0.0026	0.0021
Reflectance 6/10/87	0.1192	0.0995	0.0810	0.0287	0.0174	0.0111	0.0068	0.0008	0.000	8000.0	6000.0
Reflectance 5/12/87	0.0840	0.0740	0.0587	0.0312	0.0222	0.0153	0.0031	0.0013	0.0018	0.0019	0.0233
Center Wavelength	410	441	488	620	240	280	683	625	658	671	694

• • 5/05/87 • • 5/12/87 • • 6/10/87 • • 8/11/86 Figure F.4 Wolf Lake

Wolf Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

Center Wavelength	Reflectance 5/05/87	Reflectance 5/12/87	Reflectance 6/10/87	Reflectance 7/01/87	Reflectance 8/11/86
410	0.0144	0.0242	0.0275	0.0463	0.02780
441	0.0208	0.0318	0.0309	0.0547	0.02710
488	0.0291	0.0427	0.0361	0.0546	0.03255
520	0.0263	0.0357	0.0236	0.0320	0.0350
640	0.0240	0.0332	0.0207	0.0268	0.02200
2 80	0.0196	0.0267	0.0169	0.0194	0.01800
683	0.0122	0.0180	0.0102	0.0117	0.01050
625	0.0040	0.0055	0.0030	0000	
656	0.0023	0.0039	0.0020	0.003	2000
671	0.0023	0.0033	0.0016	0.0021	20.0
694	0.0019	0.0032	0.0017	0.0019	0.00170

■ • 6/10/87 ▼ • 7/01/87 Figure F.5 North Yorkston Lake

200

at Z Meters	Reflectand 7/01/87	0.0992 0.1104 0.1144 0.1018 0.0918 0.0662	0.0221 0.0161 0.0129 0.0077
n Lake Mer Data Multitemporal Mer Reflectance	Reflectance 6/10/87	0.0293 0.0467 0.0708 0.0792 0.0836 0.0834	0.0354 0.0278 0.0254 0.0214
North_Torston Me	Center Wavelength	4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	625 656 671 694

Finite F 6 Whitepine #2 Lake

• • 5/05/87 • • 5/12/87 • • 6/10/87 • • 6/30/87

Whitepine_#2 Lake Wer Data at 2 Meters Multitemporal Mer Reflectance

enter length	Reflectance 6/05/87	Reflectance 5/12/87	Reflectance 6/10/87	Reflectance 6/30/87	Reflectance 8/14/86
110	•	0.0021		0.0057	0.0032
141	0.0040	0.0010	0.0087	0.0031	0.0053
188	0.0080	.0.0109	0.0118	0.0160	0.008
200	0.0123	0.0151	0.0144	0.0198	0.0103
240	0.0164	0.0182	0.0169	0.0226	0.0111
980	0.0155	. 0.0203	0.0169	0.0239	8110.0.
683	0.0132	0.0176	0.0123	0.0196	9600
125	0.0039	0.0079	0.0044	0.0057	0.0035
158	0.0036	0.0059	0.0033	0.0040	0.0025
171	0.0028	0.0049	0.0029	0.0033	7000
194	0.0044	0.0046	0.0024	0.0028	0.0024

Figure F.7 Dougherty Lake

• • 5/05/87 • • 5/12/87 • • 6/10/87 • • 6/30/87

Dougherty Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

		Men Ret	Mer Reflectance		
enter	Reflectance 5/05/87	Reflectance 5/12/87	Reflectance 6/10/87	Reflectance 6/30/87	Reflectance 8/17/86
410	0.0168	0.0217	0.0529	0.0443	0 0350
141	0.0229	0.0281	0.0793	0.0512	0.0385
488	0.0299	0.0340	.0.1062	0.0811	.0.03
520	0.0249	0.0282	0.0800	0.0483	0.0254
540	0.0230	0.0249	0.0714	0.0520	0.00
280	0.0180	0.0186	0.0540	0.0396	1910
683	0.0110	0.0123	0.0316	0.0258	7800
325	0.0032	0.0030	0.0085	0.0049	0.00
358	0.0025	0.0017	0.0055	0.0037	*100
371	0.0020	0.0012	0.0049	0 0032	
394	0.0018	0.0012	0.0040	0.0026	0.0012

Figure F.8 Centre Lake

• 5/05/87 • 5/12/87 • 6/10/87 * 6/30/87

Centre Lake Mer Data at 2 Meters Multitemporal Mer Reflectance

Center Wavelength	Reflectance 5/05/87	Reflectance 6/12/87	Reflectance 6/10/87	Reflectance 8/30/87	Reflectance 8/22/86
410	•	•	0.0038	0.0052	0.00880
441	0.0084	0,0060	0.0058	0.0084	0.00970
488	0.0164	0.0116	0.0086	0.0142	0.01498
620	0.0211	0.0143	0.0097	0.0184	0.01800
640	0.0236	0.0162	0.0102	0.0175	0.01850
999	0.0283	0.0166	0.0097	0.0185	0.01850
689	0.0225	0.0135	0.0073	0.0125	0.01440
625	0.0086	0.0051	0.0024	0.0040	0.00500
858	0.0081	0.0036	0.0017	0.0028	0.00400
871	0.0056	0.0032	0.0015	0.0028	0.00380
. 469	0.0084	0.0030	0.0011	0.0024	0.00380

APPENDIX G

LAKE EXTRACTED TM SIGNAL VALUES AND ATMOSPHERIC CORRECTED VALUES

Thematic mapper (TM) signal digital count value for lake extracted samples are listed in the following tables. Also listed are the standard deviation estimates for each sample.

Table G.1. August 13, 1986 (P19,R27)

Table G.2. August 18, 1986 (P22,R27)

Table G.3. May 12, 1987 (P19,R22)

Table G.4. June 13, 1987 (P19,R27)

Atmospherically normalized value are listed in the following tables.

Table G.5. August 13, 1986 (P19,R27)

Table G.6. August 18, 1986 (P22,R27)

Table G.7. May 12, 1987 (P19,R27)

Table G.8. June 13, 1987 (P19,R27)

Table G.1

S.D.

4

Band s.b. 00.00 00 Band 3 S.D. N Band SUDBURY QUAD 3 AUGUST 13, 1986 SIGNALS AND STANDARD DEVIATIONS s.b. 00.73 11.530 11.520 11.520 11.520 11.530 11. Band 1 Band m 24444 2000 RAW TM 21.56 22.33 22.33 22.33 22.33 22.33 22.33 22.33 22.33 22.33 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 22.30 23.30 70.44 70.67 72.78 72.78 72.67 73.00 72.94 73.00 73.33 70.22 Band

Table G.2
ALCOMA QUAD 4
AUGUST 18, 1986

	Band 4 S.D.		0.314	0.685	0.628	3 T C	0.314	0.416	3.232	0.667	0.685	000	0.471	0.314	0.497	0.440	0.471	0.530	0.788	0.000	0.831	7.00	9.5	0.410	5.0	0.497	0.497	00.0	0.471	0.686	0.471	0.314	0.418	0.73	000	000.0	0.497	0.737	0.687	0.471	0.410	0.007	7.00	5.5	1.10	1.00	0.471	0.737	0.831	0.314	10.035
	Band 3 S.D.		0.314		0 497	1.086	1.100	1.133	1.133	0.786	1.030	0.497	0.816	0.685	0.471	0.860	0.497	1.300	0.831	0.00	1.200	2000		030	0.876	0.943	1.286	1.030	0.843	0.685	0.943	1.066	4.0	0.418	0.737	1.064	0.471	0.831	1.397	790.0	1.100 1.00	1.247	0.831	1.054	0.816	0.737	0.629	1.100	1.030	1.166	1.826
SNC	Band 2 S.D.	727	0.73	0.0	0.314	1.165	0.667	0.497	1.166	1.100	0.471	0.687	0.817	0.667	0.497	0.440	77.0	0.440	0.028	7.60	200	629	0.497	1.156	0.471	0.629	0.831	1.133	0.416	0.817	0.497	20.00	0.4.0	0.416	0.686	0.786	0.667	0.916	0.737	100.0	1.054	0.831	0.314	1.247	0.916	1.064	0.314	0.737	0.587	0.685	1.414
STANDARD DEVIATIONS	Band 1 S.D.	155	1.685	2.096	1.333	2.439	1.423	1.064	1.423	1.491	0.884	2.587	0.916	1.563	2.081	8.5	979	2.0		1 267	2.096	0.958	1.563	1.030	0.471	0.884	0.876	0.416	1.489	1.088	0.007	1 247	1.414	0.667	1.771	1.370	2.043	1.623	7.0.7	1.583	1.397	1.489	1.267	1.812	1.764	0.876	1.100	1.707	1.784	1.700	0.994
SIGNALS AND ST	Band 4	11.111	10.656	10.222	11.222	14.558	10.889	10.778	12.333	10.889	10.444	000.11	10.687	20.01	11.666	38	3	11 222	000	12.556	11.667	11.222	11.222	11.111	10.778	10.666	11.556	000.11	11.667	11.44	11 880	11.778	10.889	10.333	11.000	11.000	10.658	9.889 10.887	10.333	10.778	10.000	10.111	000. 6	8.883	9.556	9.668	9.667	10.889	4. (ت	17.558
RAW TH SICH	Band 3	m	•	4	60	ف	16.889	÷.	÷.		÷.	· •	٠.	14.44	86.1	16.556	15.700	14. 55A	14.778	14.889	14.667	13.667	16.333	14.222	13.889	13.667	14.889	14.222	10.556	•	•	15.333	•	16.222	₩,	• •	7	7	. (17)	14.000	14.444	16.000	14.444		14.667	•	•	16.889	•	•	Ď.
	Band 2	18.889	18.000	17.444	19.111	18.556	19.000	19.444	200	200. / T	18.333	13.11	70.01	19.000	19.80	19.333	19.200	19.222	19,333	19.111	17.778	17.778	19.556		18.333				10.4.0	19.65	18.111	19.222	18.778	18.222	18.444	18.222	17 779	17.889	17.556	17.558	18.000	19.444	18.889	17.333	18.222	_	w (18.889	10.889	20.000	700.07
	Band 1	62.333	60.778	62.222	63.000	61.778	64.444	62.333	100	91.000	40 550	07.000	A2 AA7	62.55 55.65	64.100	62.444	63.200	61.889	62.667	63.444	62.222	62.558	63.000	62.778	62.687	62.111	62.883	01.70	23.00 FEE	68.88 83.33	62.111	62.667	62.687	61.333	63.444	88.79	80 111	60.222	61.222	61.000	60.778	64.444	61.556	60.222	60.333	688.09	60.883	62.444		? =	:
	NAME	ATOMIC	EAST	LITTLE A	MADER	MALLOT	MUNIKEAL	2 C	Z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7070070	YOU	2 N N	HATI FY	ROI	0 0 X	BIG PIKE	66X	RAND	PATTERS0	BUTTER	McCOLLOU	DICK	McGOVERN	66X	GRIFFIN	50X	ADELAIDE	XOO	TTTIET		DREW	LITTLE D	SPECKLED	LIONEL	HOBER I	LUARLIE WEST	ROTINDA	DOYLE	REDCLIFF	UNION	DIXON	SNYDER		LITTLE Q	EMERSON NO STU	NUKTH CH	NOT SE	BROWN	RED PINE	RUTTER T	
	LAKE_ID	¥	P	9	¥	۷ ×	£ 3	5 3	5 2	3 2	5 2	3 6	3 &	ā	F,	Ŀ	3	15	19	ð	오	S.	ш ;	<u>ت</u> د	ž :		٤٤	2	1 7 2	ž	8	8	×	×	< >	< >	(×	×	×	×	×	× :	× :	× 3	× >	< >	< >	< ×	< ×	: ×	(

Table G.2 (Cont.)
ALGONA QUAD 4
AUGUST 18, 1986
W TH SIGNALS AND STANDARD DEVI

			œ	RAW TH SIGNALS AND	ALS AND ST	STANDARD DEVIATIONS	SNO		
LAKE_ID	NAME	Band 1	Band 2	Band 3	Band 4	Band 1 S.D.	Band 2 S.D.	Band 3 S.D.	Band 4 S.D.
>	HANES	61.667	17.444	13.667	10.222	1.491	•	0.667	0.416
<>	PRIVATE	•	18.333	16.889	11.000	0.685	•	1.100	000.0
<>	CONTR	82.000	18.556	16.333	11.000	0.817		1.247	000.0
< >	MORRISON	61.778	19.111	16.666	11.000	0.786	0.737	0.966	0.667
: >	TEPEE	61.667	18.444	14.111	11.667		1.086	0.737	0.471
×	CHUBB	62.000	19.444	16.111	19.222	1.247	2.061		17.106
×	POINT	61.222	16.667	14.333	9.444	1.686	•	1.247	0.956
×	GRAHAM	61.556	17.667	14.667	11.11	•	1.054	0.943	0.314
×	LIMERICK	60.778	17.667	14.222	10.889	1.685	1.155	0.916	0.737
×	PATTERS0	000	888	88	88	88	88.6	88	88
×	COULAIS	000.0	88	88	88	38	38	38	38
×	GULL	88	88	38	38	88		300	38
×>	MIKKUK	38		80	0	0.00	0.00	0.00	00.00
< >	WEI COME		000	000	00.0	0.00	0.00	0.00	0.00
< >	ARMOUR	000	000	00.0	0.00	0.00	0.00	0.00	0.00
< >	SOUTH BR	000	00.0	0.00	0.00 0.00	0.00	0.00	0.00	0.00
(×	TOJAK	000.0	0.00	00. 00.	0.00	0.00	0.00	0.00	0.00
×	LAC CHER	0000	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
: ×	ANNIBAL	61.668	18.000	14.778	10.867	0.966	0.943	1.227	0.471
: ×	NEGICK	63.333	18.333	14.889	12.000	1.247	0.667	0.884	00.0
×	TRIM	64.111	19.656	16.111	11.667	1.852	0.497	0.314	0.471
×	S.TILLEY	63.778	20.556	16.222	11.222	1.316	0.856	0.629	0.416
×	MEENACH	62.111	18.111	14.444	10.666	0.314	0.73	0.686	0.086
×	EAST	61.778	18.556		11.//B	1.133	0.70	98.0	0.628
×	DILL	62.558	18.111	13.550	*****	1.100	200	90.	764.0
×	TURTLE	62.444	18.7/8	16.778	11.000	0.685	1.054	1.030	0.43
×	TROUT	01.000	3	14.000	11.55	1.499	0.314	1.315	0.497
×	רזרא אינו	01.000	17 880	14.222	10.778	1.342	0.994	1.030	0.416
< >	AL COLEN	A1 778	18.444	14.222	11.333	1.685	0.831	0.786	0.816
<>		62.667	19.000	14.889	13.000	1.064	0.667	1.286	2.261
< >	ELMER	61.889	17.889	14.000	11.444	1.863	0.737	0.816	0.497
< ×	GAVOR	61.444	16.111	•	8.889	0.686	0.687	0.667	1.100
×	MONASHIN	61.667	18.778	16.687	13.666	1.633	1.397	1.064	3.095
×	GUYATT	61.111	17.444	14.444	11.000		0.686	1.257	0.00
×	SPRUCE	61.656	17.222	13.889	11.000	1.499	1.227	0.667	0.471
×	MONGOOSE	61.222	17.000	13.444	10.4	9.4.0	0.840	78.0 84.0	0.088
×	WART	61.66/	700.00	11.11	11 222	1 107	20.0	0.0	
×	HOAK I IN	40 779	10.333	15.558	10.444	0.628	0.916	0.831	0.685
< >	INTER	A1 333	17,333	14.889	10.778	1.064	0.816	0.884	0.416
< >		000.TV	18.333	14.111	10.222	1.623	0.667	0.737	0.816
< >	RATNE	60.656	18.333		10.222	1.771	0.843	0.314	0.416
(>	LOGAN	61.444	18.000	15.222	10.444	1.066	0.00	1.133	0.497
: ×	OLD WOMA	60.444	18.778		12.889	0.956		1.370	2.131
×	LAKE SUP	0.00	0.00		0.00	0.00	•	0.00	0.00
×	HARRYS	63.333	18.667	14.222	10.667	1.064		0.786	0.471
×	FIRST	62.444	•	•	12.000	1.267	0.687	1.030	0.00
×		63.000	19.111	16.778	18.333	٠	1.370	1.030	807.80
×	BLACK BE	÷	•	•	10.444	1.100	0.629	0.848	0.686
×	HOWLING	•	•	15.667	10.888	0.850) . 4 &	2	0.137
×	WELLS	62.111	19.000	14.444	11.533	1.023	700.0	0.631	٠٠٠

Table G.2 (Cont.)

# ××××××××	NAME SPECKLED STAN FRATER DOTTIE LLOST MACGREGO KENNY MUDHOLE CRESCENT	Band 1 63.000 62.667 63.111 62.556 64.1311 64.2822	Band 2 19.444 18.556 19.222 18.556 19.333 19.667 18.222	Band 3 16.111 14.000 16.000 14.444 15.000 16.333 14.333 16.333	ALGOMA ANGUST 18 ANGUST 18 Band 4 11.111 11.556 11.000 12.22 11.222 11.222 11.333	ALGOMA QUAD 4 AUGUST 18, 1986 TM SIGNALS AND STANDARD DEVIATIONS and 3 Band 4 Band 1 S.D. Ba 1.111 11.111 1.633 0.000 11.333 1.054 0.000 11.000 11.247 0.000 12.000 1.267 0.333 11.222 12.000 1.685 0.922 12.000 11.333 1.370	10NS Band 2 S.D. 0.685 0.685 0.786 0.497 1.133 0.816 0.471	Band 3 S.D. 0.875 0.816 0.667 1.054 0.943 1.315	Band 4 S.D. 0.314 0.816 0.497 0.667 0.667 0.786 0.786
60X	GREYOW.	61.222	18.333	14.000	88.6	1.316	0.816	1.247	1.333 0.314

Table G.3 subbury quad 3 MAY 12, 1987 RAW TH SIGNALS AND STANDARD DEVIATIONS

LAKE_ID	NAME	Band 1	Band 2	Band 3	Band 4	Band 1 S.D.	Bend 2 S.D.	Bend 3 S.D.	Band 4 S.D.
•	9	14 99	77 66	20.11	13.00	1.64	0.630	1.760	8
41.	>N -	75.27	22.44	00	12.00	2.03	0.630	1.220	8.0
111		90.71	99 . 26	00 81	12.00	1.27	0.730	0.600	8.
124		27.	22.67	19.33	12.44	1.12	0.870	0.500	0.63
126	CINNWAT	80.08	21.78	17.67	12.00	1.05	0.440	0.870	8.0
C	ZI duli IM	76.00	23.00	20.22	13.11	2.12	1.00	0.810	0.60
136	MARTNA	73.67	21.78	17.67	12.00	1.50	0.440	1.000	0.0
146	TTT F	75.89	23.67	20.67	12.78	1.54	0.870	1.410	0.44
145	FRRY	76.50	22.33	18.60	12.30	2.18	0.500	1.010	0.60
14H	SMOOTHWA	74.80	22.00	18.11	11.67	1.86	0.00	0.780	0.60
170	MIHELL	73.30	22.00	17.89	12.00	17.0	000	0.600	8.0
88	NORTH YO	74.44	22.65	19.89	12.44	1.69	0.730	1.360	0.73
184	66X	73.00	22.33	18.33	12.00	1.41	0.500	1.00	8.9
180	66X	74.78	22.44	17.89	12.00	2.17	0.630	0.330	8 .0
220	P TI GR TM	74.11	22.00	18.11	12.00	1.06	0.600	0.780	°.8
220	MAGGIE	75.30	23.20	2 0.00	12.70	1. 8	0.830	1.88 8.89	0.87
234	BI UESUCK	76.00	22.89	19.20	12.40	1.73	0.330	7.60	0.63
27.	86%	75.60	22.10	18.50	12.00	0.88	0.780	1.420	8:
28C	STOUFFER	73.30	21.89	17.89	12.00	1.22	0.330	0.601	8.
29C	FREDERIC	76.40	22.20	18.00	12.00	1.69	0.440	0.00	8:0
300	DOUGHERT	74.89	21.67	17.22	11.89	1.06	0.600	0.440	0.33
334	LAURA	74.40	21.80	17.30	12.00	1.40	0.440	0.500	8:
33D	CHINIGHC	78.40	22.30	17.70	12.00	1.30	0.600	0.500	8:
336	66X	76.50	22.50	19.00	12.20	1.61	0.630	1.320	0.44
348	66X	78.40	23.40	17.89	13.10	1.13	0.880	0.60	0.0
340	66X	79.20	22.90	18.20	12.30	1.39	0.330	0.670	0.60
346	66X	78.80	22.60	17.60	12.40	1.71	0.880	0.530	0.88
364	66X	28.00	23.00	18.40	12.30	2.12	0.870	0.880	0.60
368	DEWDNEY	77.60	24.00	18.80	12.10	0.88	0.710	1.480	0.33
360	66X	74.80	22.00	18.67	12.00	1.30	0.00	1.120	8.0
368	FRANKS	76.30	23.10	18.20	12.30	0.87	1.170	0.440	0.0
360	LAWLOR	77.00	24.10	18.10	12.20	8.	0.780	0.601	•
378	WOLF	76.90	21.70	17.20	12.10	1.60	0.500	0.970	0.33
370	66X	78.70	23.20	17.67	12.67	1.22	0.670	0.710	0.71
388	MATAGAMA	76.70	24.30	19.33	12.89	8.	1.000	1.580	0.78
38D	OTTER	80.20	22.30	17.60	12.40	0.83	0.710	0.630	0.63
404	MATAGAMA	74.80	22.67	20.55	12.00	0.97	0.600	1.500	8
X02	CENTRE	74.30	22.10	18.11	11.33	1.60	0.601	0.780	0.60
XO3	WHITEPIN	76.00	22.89	17.89	11.78	1.32	1.060	0.500	0.44
8 0 ×	THEODORE	72.90	21.10	18.00	12.00	1.36	0.330	0.710	8.0

Table G.4

SUDBURY QUAD 3

JUNE 13, 1987

RAW TM SIGNALS AND STANDARD DEVIATIONS

Band 4 S.D.	0.71	0.50	8.0	0.87	000	0.60	0.73	0.60	0.71	4.0	0.44	0.60	0.33	8.0	800	0.60	8.0	0.60	0.60	0.63	0.50	0.73	0.60	0.67	0.60	0.44	0.71	0.88	0.44	0.83	0.44	0.87	0.78	ها	0.78	0.60	1.8	00.0	0.44	8) (
Band 3 S.D.	0.80	1.06	0.67	0.44	1.01	9:1	0.33	0.73	0.44	1.8	0.60	0.93	0.0	1.01	0.4	0.4	0.71	8.0	1.10	0.63	0.4	1.20	0.60	0.0	0.60	0.33	1.12	0.83	0.60	0.33	0.73	0.4	0.78	0.60	1.48	0.73	0.33	1.69	0.97	8) (
Bend 2 S.D.	0.71	0.60	0.71	8.0	0.60	0.60	0.88	0.71	0.60	0.50	0.88	0.60	0.33	0.60	0.4	0.93	1.01	0.83	1.06	0.60	0.44	0.60	8.0	0.63	0.78	0.78	1.01	0.60	0.71	1.30	1.80	0.73	0.63	1.17	0.63	0.63	0.87	0.60	0.33	0.73) (
Band 1 S.D.	1.59	1.32	1.64	1.22	1.32	1.64	0.93	1.22	1.73	2.03	1.72	0.67	1.66	1.48	1.01	0.83	0.97	1.59	1.40	1.06	1.66	1.30	1.17	0.71	1.30	0.44	2.06	2.24	1.66	1.42	2.44	1.50	1.36	1.83	1.72	1.87	2.08	1.56	1.00	1.27	. (
Band 4	13.00	12.67	12.00	13.00	12.00	12.33	11.66	12.67	11.67	10.78	10.78	13.11	11.89	12.00	11.00	11.33	11.00	11.67	11.67	10.56	11.00	10.44	12.11	10.78	11.67	12.22	12.67	11.55	11.22	11.78	12.22	12.33	11.89	11.33	12.89	11.67	11.67	12.00	10.78	11.00	•
Band 3	17.90	16.11	17.22	16.78	16.65	16.33	16.89	17.44	16.78	16.33	17.00	17.90	17.00	17.55	16.78	17.22	17.00	17.00	16.78	16.44	16.20	16.00	17.33	17.80	16.89	16.89	18.8	17.22	17.00	16.89	17.44	17.78	16.89	17.11	18.75	17.66	17.11	18.89	16.22	17.00	-
Band 2	22.00	21.67	22.67	22.00	21.67	21.67	22.66	21.67	21.67	21.00	21.66	22.00	21.89	22.33	21.22	21.89	21.66	22.22	21.89	20.89	21.22	20.89	21.00	21.44	21.89	24.11	24.44	22.11	22.33	23.22	22.33	22.66	22.44	22.11	24.55	23.65	22.00	23.11	20.89	21.44	ă
Band 1	71.66	73.67	76.11	76.33	81.00	73.78	73.11	74.33	76.33	73.89	70.80	75.20	74.33	76.22	72.44	72.22	73.78	74.44	73.89	71.89	76.00	76.30	73.11	72.33	73.22	79.22	78.22	77.66	78 .00	77.66	73.78	76.33	76.11	78.11	77.22	77.33	77.89	74.78	71.67	71.89	69 22
NAME	66X	LAMY	WABUN	66X	SCHWYWAT	WHITEPIN	MARINA	LITTLE W	JERRY	SMOOTHWA	MIHELL	NORTH YO	66X	86X	PILGRIM	MAGGIE	BLUESUCK	SOLACE	88X	STOUFFER	FREDERIC	DOUGHERT	LAURA	CHINIGOC	66X	66X	66X	88X	66X	DEWONEY	66X	FRANKS	LAWLOR	WOLF	66X	SILVESTE	OTTER	MATAGAMA	CENTRE	WHITEPIN	THEODORF
LAKE_ID	114	110	12A	128	134	130	13E	14E	14F	14H	17C	188	194	19 C	2 2C	22D	23A	23E	27.A	2 8C	2 8C	300	33 A	33D	33E	348	340	34E	36A	358	36D	36B	360	37B	370	380	380	40	X02	X03	×

Table G.5
subbury quad 3
August 13, 1986
CORRECTED TM SIGNALS AND STANDARD DEVIATIONS

LAKE_ID	NAME	Band 1	Band 2	Band 3	Band 4	Band 1 S.D.	Band 2 S.D.	Bend 3 S.D.	Band 4 S.D.
114	66X	88.7465	25.8936	19.6342	16.8597	0.73	0.63	0.44	0.33
110	I ANY	89.1746	26.9856	19.9223	16.7149	0.87	0.60	0.73	88
124	WABLN	93.0912	26.6828	18.6321	14.3983	1.30	0.53	0.97	88
128	66X	92.6511	26.0788	20.0413	•	1.69	0.44	00.00	77
134	SUNNYWAT	98.8247	26.2615	19.1982	16.7149	1.68	0.67	0.78	8
130	WHITEPIN	92.6179	25.7588	19.6385	15.2804	1.22	0.44	8.0	0.60
136	MARINA	92.0069	26.8639	20.1714	16.1358	1.61	0.87	0.71	0.63
14E	LITTLE W	92.0581	26.1283	19.9744	16.4252	1.41	0.73	0.71	0.44
14F	JERRY	97.1866	26.6828	19.3562	*	1.62	0.63	0.87	0 .0
14H	SMODTHWA	880.98	26.8013	20.8439	13.0818	1.88	0.33	0.44	8.0
17C	MIHELL	91.6630	26.4977	21.0346	16.8866	1.22	0.88	1.62	0.33
188	NORTH YO	90.6092	26.3552	20.7917	•	2.17	0.33	0.33	0.44
194	66X	90.3136	26.6293	19.5863	16.6700	•	0.87	0.33	0.33
190	66X	91.0374	26.0903	20.0934	14.3983		0.33	0.33	8.0
22C	PILGRIM	94.5721		20.2846		1.22	0.33	0.33	0.33
22D	MAGGIE	92.9662	26.1167	20.8482	16.7149	1.81	0.60	0.83	8.0
23A	BLUESUCK	91.0668	26.6449	20.9366	13.3714	1.74	0.33	0.0	0.4
28C	STOUFFER	92.4988	26.3800	19.6468	14.3983	9.1	0.60	0.88	8.0
29 C	FREDERIC	94.2300	26.5116	20.6991	13.0818	1.39	0.33	0.71	8.0
300	DOUGHERT	96.4017	26.0772	20.1066	13.0818	1.12	0.63	0.83	0.0
33A	LAURA	87.7922	26.2220	20.8439	en.	0.60	0.60	0.44	0.0
33D	CHINIGOC	93.7824	26.6564	19.8170	13.0818	0.88	8.0	1.22	8.0
33E	66X	90.7344	27.0127	20.4428	13.2266	1.09	0.71	0.73	0.33
348	66X	94.8885	26.4977	18.9807	16.8866	1.39	0.63	0.60	0.33
34D	66X	90.7478	26.3800	19.8038	14.3983	2.34	0.60	0.60	8.0
34E	88X	92.9330	26.4334	18.2572	13.2266	0.33	0.33	1.36	0.33
35A	86X	94.9641	26.5116	20.3962	13.0818	1.73	0.33	0.73	0.0
358	DEWONEY	91.6774	26.5898	19.6258	•	1.60	0.83	0.87	0.33
360	66X	96.2766	26.5782	19.2840	13.2266	1.73	8.8	0.60	0.33
368	FRANKS	91.3464	26.0868	19.6200		1.58	0.60	1.8	0.44
360	LAWLOR	91.7613	•	19.1392		1.66	0.60	1.01	0.33
378	WOLF	94.0862	•	19.2377	•	0.71	0.60	1.24	8. ₀
37D	66X	90.3981	26.3436	17.3693	•	1.49	8.0	0.88	0.63
388	MATAGAMA	88.7473		~	12.6473	1.87	9.	0.4	0.87
380	SILVESTE	94.6645	ė	18.0660	13.0818	1.90	0.78	1.22	0.0
38D	OTTER	94.6646	•	18.0660	13.0818		0.78	1.22	0.0
40	MATAGAMA	91.4194	ė.	20.9423	12.9370	1.69	0.60	0.67	0.33
X02	CENTRE	8868.06			•	1.01	0.33	17.0	0.44
к 03	WHITEPIN	91.0765	26.3684	20.1861	14.6880	1.13	0.88	0.33	0.4
						•			

Table G.6
ALGOMA QUAD 4
AUGUST 18, 1986

AUGUST 18, 1986 CORRECTED TW SIGNALS AND STANDARD DEVIATIONS	Band 2 Band 3 Band 4 Band 1 S.D. Band 2 S.D. Band 3 S.D.	7 1400	14 1790 0.1824 15.0720 1.000 0.440 0.860	10.04/6 16.1016 1.333 0.314 0.402	1/.0286 8.2837 14.5041 1.054	15.8166 7.8950 14 0544	14 1728 B 5540 11.030	15 11 0.970 0.440 1 200	10.1/38 7.5956 15.6511 0.875 0.831	15.5722 7.0276 14.2054 0.994	16.5334 7 0872 14 FOLD C. 622 0.943	16.4255 A 1972 15.401 0.471	18 8000 0:487 0:487 0:483	15 4193 4 645 15 1016 1.583 0.497 0.816	1.066 0.817 0.85	14.1312 7.3562 14.3547 0.918 0.91	16.3369 7.7147 14.663K 1.523 C.51/ 0.816	16.3921 6.4002 14 8003 1.503 0.887 0.885	16.7242 8.0735 15.704 5.087 0.567 0.497	14.8084 B 1940 1.1488 0.416 0.943	14 101 4 100 100 100 100 100 100 100 100	14-1101 0-3106 15-1016 0-956 0-629 0-629	16.1/39 7.2967 15.6511 2 041 0.610	12.6306 6.1124 19.5823 5.00 0.48/ 0.471	18,3369 0 8602 1 8500 2.438 1.165 1.066	1.423	
CORR	Bend		65 1479 14 2020																								
	LAKE_ID NAME	FA X99	AH MADER																						_		

Table G.7

Sudbury quad 3

MAY 12, 1887

CORRECTED TM SIGNALS AND STANDARD DEVIATIONS

KF ID	NAME	Band 1	Band 2	Band 3	Band 4	Band 1 S.D.	Bend 2 S.D.	Band 3 S.D.	Band 4 S.D.
1			•	2000	4364	1 28	0.330	0.710	0.0
90X	THEODORE	88.6940	24.1140	19.8325	13.020	5 -	009	1.000	8.0
104	86X	88.7192	25.6541	20.248/	13.0200	4.4	000	1 780	8
114	66X	88.7443	24.6021	20.9612	14.8778	* 0.1	0.00		88
()	MTHELL	89.0949	26.2409	19.6947	13.6256	0.71	3		88
776	ETO ICEED	80 0849	25.1032	19.6947	13.6256	1.22	0.330	0.601	33
286	10016	200.00	26. 6124	20.8320	14.1766	1.12	0.810	0.600	6.63
128	PAX.	2015.80	25.0815	20. 9324	15.0155	2.12	1.80	0.810	0.60
130	WHITEPIN	200.80	2100.00	19 4193	13.6256	1.60	0.440	1.000	8.
13E	MARINA	2999.89	1008.17	01 5331	14.1766	1.69	0.730	1.360	0.73
188	NORTH YO	89.8612	1205.92	10 0100	12 6256	1.06	0.600	0.780	8.
22C	PILGRIM	90.1091	20.2408	0000	12 4254	9	0.440	0.600	8.0
33A	LAURA	90.4722	24.850	16.8660	14 5021	8	0.830	1.000	0.87
22D	MAGGIE	90.6474	25.5407	1001 00	•	1 73	0.330	1.600	0.63
23A	BLUESUCK	90.6225	26.8384	20.1287	14.1400	2 2 2	0.630	0.330	8.0
19C	66X	90.9480	26.7918	7480.81	13.0200	7 -		1.120	0.00
350	66X	90.9731	26.2409	20.6714	13.0200	1.30	8	003	8
4	MATAGAMA	90.9731	26.0798	23.0264	13.6256	3 .	36.0		8
	MARIEN	91.0858	26.9296	19.8326	13.6256	1.27	0.730		3 3
V21	# 1111 F	91,1659	26.3260	21.9953	14.6023	1.64	0.870	1.410	
146		01 2511	24.9896	19.0223	13.4879	1.06	0.500	0.440	5°.0
000	מונים מינים	01 2527	28. 2302	20.9841	12.7867	1.60	0.601	0.780	0.0
X02	CENIKE	2007	SE ARRE	20.4696	13.2124	1.86	0.000	0.780	0.50
14H	VALUE OF STREET	WI. 100 W	088.80	20.0277	13.3502	1.32	1.060	0.500	0.44
e O X	MILELIN	1400.18	20.03 20.03 20.03	20 4585	13.6256	0.88	0.780	1.420	8.
27A	66X	91.8480	20.3001	20.1510	14.7400	8.1	1.000	1.580	0.78
38B	MATAGAMA	85.0148	00.07	21.02	13.8258	2.03	0.630	1.220	8.0
110	LAMY	8755.28	20.030	10 4053	14 4848	1.22	0.670	0.710	0.71
370	66X	82.3454	20.02		21.00	78.0	1.170	0.440	0.60
368	FRANKS	92.4005	26.2313	18.020	25.41	2.18	0.600	1.010	09.0
14F	JERRY	92.6508	7107.97	20.00	13 6761	15	0.630	1.320	7
33E	66X	92.8012	25.6090	20.701	12.675	9	0.440	0000	8.0
2 9C	FREDERIC	92.8/69	20.4813	0700.61	12.010	8	0.780	0.601	*
380	LAWLOR	93.4273	27.6124	70000.81	13.0.01	3 2	0.600	0.810	0.33
378	¥0LF	93.4523	24./303	*# / O · O ·) (088.0	0.600	0.60
348	86X	93.8280	25.6752	18.0301	16.0030	7 0	0.220	1.480	0.33
S S S	DEWONEY	94.2036	27.6162	20.6829	٠	9.0	010		02
) d	00X	94.5291	26.1061	19.8793	14.0013	2.12	0.870	0.83	8 8
C L	9 0	3808	26.3511	18.6011	14.1265	1.71	0.880	0.630	
1 6	CHATATA	95 4808	25.6165	19.4688	13.6256	1.30	0.600	0.00	
330	7001NTU2	000.00	96 9809	19.6289	14.0013	1.39	0.330	0.870	- · · · · · · · · · · · · · · · · · · ·
340	2 H	07 1338	26, 1007	18.6011	14.1266	0.83	•	0.630	0.63
380	OI EK	•	24.0454		13.8258	1.06	0.440	0.870	8.0
134	SUNNYWAT	98.5980	1906.17) 4 7 6	•	i i			

Table G.8

SUDBURY QUAD 3

JUNE 13, 1987

CORRECTED TM SIGNALS AND STANDARD DEVIATIONS

Band 4 S D	. 12	8.0	0.87	8:	0.60		5.5					80	8	99	8	32				2.5	2.6	9.6	9.0	2:	* :	7.0			6.00		2 6		9.6		8.5	3.6	•	•	88	-
Band 3 S.D.	0.60	0.67	0.44	5.5	3.5		77	8	200	6.0	00.00	1.01	0.44	0.44	0.71	0	5		77			8 8	3.6	9.6	25.5	7.17	3 5				2 2		7	27.0	7	6.55	70.0		3.5	•
Bend 2 S.D.	0.71	0.71	8.8	8 6	88	0.71	0.50	0.60	0.88	0.60	0.33	0.60	0.44	0.83	1.01	0.83	1.06	0.60	77	9	88		9 C	2.0	2 -	9	0.73	1.30	8	0.73	0.53	1.17		63.0	2 8 7		3.5	22.0		11.0
Band 1 S.D.	1.59	1.54	1.22	10.1	0.93	1.22	1.73	2.02	1.72	0.67	1.66	1.48	1.01	0.83	0.97	1.69	1.40	1.06	1.06	1.30	1.17	0.71	1.30	0.44	2.06	2.24	1.66	1.42	2.44	1.50	1.36	1.83		1.87	2.08		8	1.27	2.39	
Band 4	15.6007 15.1073	+1	14.3084			15.1073	13.9149			16.6319	+	14.3084	m	13.5095	13.1160	13.9149	13.9149	12.5794	13.1160	12.4483	14.4396	12.8637	13.9149	14.5707	15.1073	13.7718	13.3783	14.0460	•	14.7018	14.1772	13.5096	16.3696	13.9149	13.9149	•	12.8637		7	
Band 3	19.6675 17.7492	19.6113	18.7124	18.2341	19.4124	19.3361	19.2027	19.2487	20.0476	19.5955	19.3210	oi (19.6413	. 9499	. 9036	9.4650	. 2027	. 5305						18.9738		_	19.7596	19.2619	19.6296	19.9630	19.1899	19.8188	20.7530	20.1208	19.5962	21.5026	19.1176	19.9036	18.8424	
Band 2	24.0434	26.6972	24.5049	24.2227	26.9389	23.9321	24.7870	24.7490	26.4167	23.9494	24.8612	25.2918	24.8232	25.3400	26.2167	25.4428	25.0493	24.8145	24.8232	24.9085	23.6119	26.2736	25.0493	27.2261	27.2349	26.4142	•	26.5411	26.1037	26.2720	25.6170	25.6023	27.1780	27.0286	26.1806	26.2219	24.6178	25.0865	23.2374	
Band 1	81.8247	88.6248	94.4654	86.3968	85.6610	86.5892	89.3368	87.6404	83.9560	86.0269	86.6523	88.7558	7110.00	64.6596	4802.78	87.0833	86.4275	86.5692	88.6641	89.7860	84.8978	86.7803	86.6286	92.0332	90.2276	90.9661	91.9414	80.6416	96.6467	87.2460	87.5823	91.9226	88.7353	90.5292	91.1969	87.0389	84.9934	84.9659	81.7723	
NAME	X99 LAMY	WABUN	SUNNYWAT	WHITEPIN	MARINA	LITTLE W	JERRY	AWH LOOMS	MIHELL	NOK H 10	3 C	720	# T K O O 4 1	MAGGIE	BLUESUCA	SOLACE	884	STOUFFER	FREDERIC	DOUGHERT	LAURA	CHINIGHO	66X	66X	66X	88X	86X	DEMONEY	86X	FRANKS	LAWLOR	WOLF	86X	SILVESTE	OTTER	MATAGAMA	CENTRE	MITEPIN	THEODORE	
LAKE_ID	110	12A 12B	134	130	13E	14E	+	H .	170	981	V Q)	7 6	022	< L	23E	Z/Z	280	280	000	33 A	330	33E	348	340	34E	35A	368	360	368	360	3/8	370	380	380	4 0 4	X02	XO3	9 0×	